
1

SAS/AF® Composite Class:
A Detailed Example

Richard A. DeVenezia, Remsen, NY

ABSTRACT
The SAS/AF Composite class is the starting point for implementing
useful multi-component objects. These objects can be deployed for
use by SAS/AF Frame developers. For the entrepreneur, catalogs
of unique and timesaving composites can be a marketable and
saleable commodity. For the project manager or system developer,
using composites can increase productivity and promote GUI con-
sistency.

A class designer must consider event handling and the composite's
intra-object and extra-object behavior. The class user must under-
stand how the class will behave, and how to work with the class in
ways the designer did not anticipate.

INTRODUCTION
This paper will concentrate on a variety of techniques available to
both the class designer and class user in regard to getting the most
out of a composite class. The design and use of a sample com-
posite class, ListOfValues, will be used to illustrate these tech-
niques.

The reader should be comfortable with or cognizant of:
� Version 8 components
� Properties window
� Class editor
� Overriding attributes and methods
� Writing custom access methods
� Model / Viewer technology
� Events and event handlers
� Writing methods

ListOfValues composite class

SAMPLE SCENARIO
A developer is implementing a frame for use by a Quality Assurance
Department. Each Quality Technician is required to maintain his
own list of e-mail addresses to notify when certain quality related
issues arise. Some other program generates a report and sends it
to each address in the list. The developer designs and implements
the ListOfValues class for use in frames where individual lists of
values need to be maintained.

Sample Frame using ListOfValues

LEARNING ABOUT THE COMPOSITE CLASS
There are two online sources of documentation available to each
SAS installation.

SAS SYSTEM HELP (F1)
Documentation on the operation of the composite class can be
found in Version 8 SAS System Help, Contents tab, Help on SAS
Software Products book, SAS/AF Component Reference sub-book,
Legacy Classes (from Version 6) sub-book, Composite Class
document.

Searches on keyword composite will return help entries that are
pertinent to only SAS Version 6. Any documents that mention the
Composite Attributes Window, Edit Definition, Object Attributes,
Region Attributes or Attachments are for Version 6 and are not
applicable to Version 8.

In Version 8, the Class Editor and Properties Editor are used to
interactively design the implementation of a composite sub-class.

SAS ONLINE DOC VERSION 8 (CD)
The first release of the Online Docs CD has no information on the
composite class.

STEP BACK - DEVELOPING CLASSES
There are several ways to develop a SAS/AF class. In all cases,
code within a CLASS / ENDCLASS must be compiled using the
SAVECLASS command, and code in a USECLASS / ENDUSE-
CLASS block must be compiled using the COMPILE command. At
this time, there is no automatic make feature such as “compile this
object and all its changed dependencies.”

2

Here are three typical scenarios:

CASE 1. A SINGLE .SCL ENTRY
Contains all declarations of attributes, methods, events, event han-
dlers and interfaces and their implementations within a CLASS /
ENDCLASS block.
The .class entry is created using the SAVECLASS command. This
scenario is used when there are a few short methods.

CASE 2. TWO (OR MORE) .SCL ENTRIES.
� The first contains declarations of attributes, methods, events,

event handlers and interfaces within a CLASS / ENDCLASS
block. The .class entry is created using the SAVECLASS
command.

� The second (and others) contain implementations. Each SCL
entry must be compiled. SAS recommends using a naming
convention that indicates the relatedness of the SCL entries;
for example:
- classname.scl contains declarations
- classnameCode.scl contains the implementations.
� When the implementation code is within a USECLASS /

ENDUSECLASS block, all the attributes, methods,
events, event handlers and interfaces of the class are
early-bound at compile time and implicitly available.
Early binding promulgates the best goals of object orien-
tated programming.

� When the implementation code is not within a USE-
CLASS / ENDUSECLASS block, none of the attributes,
methods, events, event handlers and interfaces of the
class are known at compile time. The code must refer-
ence the class explicitly using the single implicit variable
SELF and dot notation (or call send()). All the features
of the class are late bound at run-time.
Late-binding provides a developer a way to have a method
that is used by classes in different class hierarchies.

CASE 3. A .CLASS ENTRY AND A .SCL ENTRY
� The CLASS entry is edited using the Class Editor. The entry is

automatically recreated when the editor is exited and changes
are saved. The .scl source for a .class entry can be obtained
by using the SAVEAS command while in the ClassEditor and
entering a .scl name in the save dialog.

� The Class Editor allows you to create or override methods, and
by default suggests the implementations reside in class-
name.scl. The SCL may or may not contain a USECLASS /
ENDUSECLASS block. See above for the discussion of early
and late binding.
Note: The ClassEditor is very similar to the PropertyEditor used
when developing FRAMEs. The default entry for overrides
suggested by the PropertyEditor is framenameMethods.scl. If
you use the SAVECLASS command, do not overwrite your im-
plementation code.
This is the development scenario used for the List-
OfValues class, with an additional SCL entry for compo-
nent event handling.

COMPOSITE CLASS IMPORTANT FEATURES
Component layout and component scope are two important fea-
tures of the Composite Class a developer must understand.

COMPONENT LAYOUT
The layout of the components that comprise a composite class are
stored in the componentDefinition attribute in the System cate-
gory. The layout tool is invoked when this attribute is edited. Select
the attribute’s InitialValue metadata column. Select the ellipsis to
enter the CompositeDefinition window. This window allows you to
manipulate components in the same manner you do when building
SAS/AF Frame entries (drag and drop, model / viewer, linking and
attachments.)

The componentDefinition attribute is Scope Protected.

Upon exiting the CompositeDefinition window, the class will auto-
matically receive one attribute of Type Object for each component
comprising the composite. These are also Scope Protected.

SCOPE RULES
Attributes with Scope Protected are only available to SCL code im-
plementing a class method within a USECLASS / ENDUSECLASS
block.

When instantiated in a frame, the Protected properties (attributes
and methods) of a class are not available.

A composite class design will require some manipulation of the
composite components. Often one or more components need to
show some changes that reflect changes to a new Public attributes
in your class. The setcam... methods, of these new attributes, are
implemented by you in your class SCL and apply the desired
changes to your composite.
[Public attributes are editable when instantiated in a frame. set-
cam... methods are Protected and unavailable at the frame level
(except through assigning a value to a public attribute).]

The available feature set of a class is the sum total of the Public
attributes and methods and their implementations.

To allow unfettered access to the composite components, you would
have to create new Public non-Editable Type Object attributes with a
name similar to those of the components. A getcam... method would
have to be written for each of these to return the object id of the
component. In most cases, unfettered access to the composite
components is not desired. Such access can bypass checks and
balances coded into the class SCL, and may lead to incorrect or
non-functional uses of your class.

LISTOFVALUES CLASS DESIGN

LAYOUT
Visual controls must be available to display the list of values, add a
value to the list, remove a value from the list, change a value in the
list and change a value’s position in the list.

PERSISTENCE
The list of values is desired to be available in any future SAS ses-
sion or invocation of frame. This means the list of values must be
stored somewhere where it can be easily retrieved later, such as a
data set, a data file, an SLIST catalog entry, a LIST catalog entry...
The catalog SLIST entry was chosen for persistent storage due to
ease of use when used with component SLIST Entry List Model.

INTERNAL BEHAVIORS (PROTECTED)
Changing the list box when an add, edit, move, or remove push
button is clicked. Displaying a list box context menu to allow adding
or removing a value. The design precludes an instantiated use that
can intercept or otherwise alter these actions.

EXTERNAL ASPECTS (PUBLIC)
Some visual aspects of the class are customizable for instantiated
use. Properties such as list box title, persistent storage location and
user prompts to present when adding an item are part of the public
feature set.

COMPONENTS
The components in the composite are:
List Box Control, SLIST Entry List Model, and Push Button Controls
- one for each action: add, replace, up, down, remove.

The List Box model/viewer interface requires a static SCL list. The
SLIST Entry List Model model/viewer interface supports a static
SCL list. Thus, these two components can be simply connected by
setting the value of the model attribute of the List Box to the name of
the SLIST Entry List Model object (see implementation section).

3

The SLIST Entry List Model reads the list of values from a catalog
entry and delivers that list to the List Box Control where it is visual-
ized.

An override of the _term() method will be where the list of values
shown in the list box will be written to a catalog entry using the
savelist() function.

INPUT A VALUE DIALOG - ENTERVALUE.FRAME
A generic helper frame used to conserve screen real estate. This
frame is called when the user needs to type in a value. The value is
passed back to the class.

If this dialog was not used, an additional text entry component would
have to be added to the composite. The designer decided the con-
ciseness of the composite required not having an input field as part
of it.

These kinds of decisions impact the reusability and deployment of
composites. It is also a small decision that may affect how end-
users ‘feel’ about an application. While some users may not like
having an extra window open just to enter a value, others may prefer
having a ‘wizard’ like input frame.

LISTOFVALUES CLASS IMPLEMENTATION
The mode of development chosen for the sample class was scenario
3 - A .class entry and a .scl entry. Additionally, examples of event
handling in a classname_methods SCL entry are shown, along with
an example of custom events and handling.

Assume these are given:
Library EXAMPLE exists.
Catalog EXAMPLE.SUGI26 exists.

CREATING THE SUB-CLASS
Use Explorer to open catalog EXAMPLE.SUGI26.
Right click and select catalog New... from the menu.
Choose the Class icon and click OK.
This will open the Class Editor. Enter these values:
Description: User Maintained List of Values

Parent Class: sashelp.fsp.composit
The Class Editor will update itself with the parent class attribtes.
Save your work so far as a class entry. Use the menu File /
Save (or Save icon in the toolbar), name the class ListOfVal-
ues.

ADD NEW PUBLIC ATTRIBUTES
Add these character attributes:
valuesAddDialogTitle
valuesAddDialogPrompt
valuesAddDialogMaskCharacter
valuesListBoxTitle
Set CAM=setcamValuesListBoxTitle

valuesSLISTEntryName
Set CAM= setcamValuesSLISTEntryName

The setcam... methods will affect changes in the appropriate com-
posite components before the attribute value is assigned.

OVERRIDE METHODS
Override this method:
_term
Source Entry= Example.Sugi26.Listofvalues.Scl
Source Label=term

ADD NEW EVENT
Add this event:
valuesListBox ContextMenuRequested
Send=Manual

ADD NEW EVENT HANDLER
Add this event handler:
Event Name=valuesListBox ContextMenuRequested
Method Name=onValuesListBoxContextMenuRequested

NEW METHODS
At this point there should be three new methods.
onValuesListBoxContextMenuRequested
setcamValuesListBoxTitle
setcamValuesSLISTEntryName

All the methods will be implemented within a USECLASS /
ENDUSECLASS block.

EVENT HANDLING SCHEMES
Two techniques are going to be implemented. All involve overriding
_onEvent methods of each the composite components. All the
override methods will reside in an SCL entry named
classname_methods.

The first technique is coding all the nuts and bolts of the event
handling in methods in the classname_methods SCL entry. All
objects in the composite can be determined using _self_.owner-
Id._getWidgets().

The second technique is to use the event handling method in
classname_methods to generate a custom event against
self.ownerId. The custom event is then processed by its event
handler.

LISTOFVALUES COMPONENTS

INITIALIZING COMPONENTDEFINITION
Locate the componentDefinition attribute in the System category.
Edit the attribute’s current Initial Value by clicking on the elipsis (...);
this will open the Composite Definition window. A screenshot of this
operation is located at the end of the paper

LAYING OUT THE COMPONENTS
Place the following components (name [type]) in the Composite -
Definition window inside the dash outlined rectangle (an automatic
component XCOMPOSX [Composite])
co_lb_Values [List Box Control]
co_mdl_ValuesSLIST [SLIST Entry List Model]
co_pb_AddValue [Push Button Control]
co_pb_ReplaceValue [Push Button Control]
co_pb_MoveValueUp [Push Button Control]
co_pb_MoveValueDown [Push Button Control]
co_pb_RemoveValue [Push Button Control]

Using conventions for object names makes reading implementation
code much easier.
Note the naming convention:
co_ implies an object within a composite
pb_ implies a push button control
lb_ implies a list box control
mdl_ implies a model

4

ListOfValues Components in
Composite Definition Window

COMPONENT ATTACHMENTS
If the composite is to be reuseable, it must be smart enough to
resize itself appropriately when an instance of itself is placed in a
frame. (The instance itself may be attached to other component’s in
a frame, which would cause a redraw of the composite to occur)

The attachments of the composite’s components are defined by
selecting the XCOMPOSX [Composite] component and using
command RM ATTACH (or menu choice Layout / Attach /
Define Attachment)

Composite’s Component Attachments

The list box component is attached to the right side and bottom side

of the composite using single directional attachment types. Hence,
when an instance of the composite is made larger, the list box will
enlarge to fit in the new size.

COMPONENT MODEL/VIEWER LINKAGES
The co_lb_Values model attribute is set to co_mdl_ValuesSLIST.
When the model object is changed an event is fired that is handled
by all objects using that model. In the ListOfValues sample, when
the co_mdl_ValuesSLIST entryName attribute (the four level SAS
catalog SLIST entry) is changed, the entry is read and the model
fires an event. The co_lb_Values handles the event by setting its
items attribute to that of co_mdl_ValuesSLIST’s, which in turn
causes the list shown to be redrawn.

Setting the Listbox’s model attribute

The above screenshot shows a portion of the Properties window
which was brought up when in the CompositeDefinition window.
The dropdown list will only show objects in the composite that sup-
port the interfaces required by the object being edited.

OVERRIDING PUSH BUTTON _ONCLICK() METHOD
When a push button is clicked, a click event is generated. The push
button event handler invokes method _onClick(). The ListOfValues
class will respond to its internal push button clicks only if the push
buttons in the composite specify an _onClick() method override.
Where you want the override methods to reside impacts how you
code the overrides. Here are two feasible possibilities:
� The override methods are coded in the same SCL entry as the

composite class (classname.scl.) This SCL can not have a
USECLASS / ENDUSECLASS block for two reasons:
� The _onClick() method override name has not been

added to the composite class
� Even if the _onClick() override method name is added to

the composite class, when the push button click event
fires and the override method is run, the component doing
the firing is not the same as the component listed in the
USECLASS statement. The AF executor system recog-
nizes this and will halt the frame.

If this scenario is used the composite components can ob-
tained using _self_._getWidget(widgetName,
widgetId)
The widgetId can be assigned to a variable declared as an ob-
ject and that variable can be used for dot notation.

� The override methods are coded in a single SCL entry named
similar to the composite class (classname_methods.scl.)
There are two considerations:
� If USECLASS sashelp.classes.pushbutton_c is desired,

all overrides have to point to a _onClick() method, and the
method implementation would have to dispatch to other
methods based on the name attribute.
This is a wasteful redundant implementation. Perform the
proper dispatching by overriding each _onClick() to a dif-
ferent method.

� Implementation is more clear if each component overrides
the _onClick()method to one named _onClickComponent-
Name(), and have all these methods reside in a single
SCL entry. However, this precludes a USECLASS
statement since the component named in the USECLASS
statement will not have the _onClickComponentName()
method already declared.

5

Component methods and attributes are referenced
through the automatic _self_ variable.

COMPONENT METHOD OVERRIDES
For all the overrides, the Source Entry metadata will be “Exam-
ple.Sugi26.Listofvalues_methods.scl”.

co_lb_Values
_onPopup(), Source Label=onPopupValues

co_pb_AddValue
_onClick(), Source Label=onClickAdd

co_pb_ReplaceValue
_onClick(), Source Label=onClickReplace

co_pb_MoveValueUp
_onClick(), Source Label=onClickMoveUp

co_pb_MoveValueDown
_onClick(), Source Label=onClickMoveDown

co_pb_RemoveValue
_onClick(), Source Label=onClickRemove

EXAMPLE.SUGI26.LISTOFVALUES_METHODS.SCL
This is the onClickAdd method demonstrating how _self_ is used to
perform explicit introspection:

onClickAdd: protected method return=num;

dcl char aValue;
dcl num rc;

dcl example.sugi26.listofvalues lov
= _self_.ownerId;

dcl object co_lb_values;
lov._getWidget('CO_LB_VALUES',co_lb_values);

call display (
'Example.Sugi26.EnterValue.frame'

, aValue, rc
, lov.valuesAddDialogTitle
, lov.valuesAddDialogPrompt, '',''
, lov.valuesAddDialogMaskCharacter);

* insert value if not already in the list;
if rc = 0 and aValue ne '' then do;

if not searchc (co_lb_values.items, aValue)
then do;

rc = insertc (co_lb_values.items,
aValue, -1);

co_lb_values._refresh();
end;

end;
endmethod;

The other onClickComponentName methods are similarly coded;
self is used to get the ownerId (which is ListOfValues), and
_getWidget is used to get the objectId of the listbox.

This is the onPopupValues() method generating a custom event:

onPopupValues: protected method return=num;

dcl example.sugi26.listofvalues lov
= _self_.ownerId;

lov._sendEvent
('valuesListBox ContextMenuRequested');

endmethod;

EXAMPLE.SUGI26.LISTOFVALUES.SCL
This is the valuesListBox ContextMenuRequested event handler
method (defined within a USECLASS Example.Sugi26.Listofvalues

block.) The ListOfValues class attributes have been bolded for
emphasis.

onValuesListBoxContextMenuRqstd:
public method;

dcl list _menu = {};
dcl num rc choice;

rc = insertc (_menu,valuesAddDialogPrompt);
if co_lb_values.selectedIndex > 0 then

rc = insertc (_menu, 'Remove ' ||
quote(co_lb_values.selectedItem) ||' from the
list', 2);

choice = popmenu (_menu);
rc = dellist (_menu);

select (choice);
when (1)

co_pb_addValue._sendEvent('click');
when (2)

co_pb_RemoveValue._sendEvent('click');
otherwise;

end;
endmethod;

CLASS SETCAM... METHODS
When the class attribute ValuesListBoxTitle is assigned a value, its
setcam... method will run. The method simply assigns the list box
component’s title attribute to be the same value. The setcamTitle
method of the listbox will visually render the new title.

setcamValuesListBoxTitle:
protected method

attributeValue:update:char
return=num;

co_lb_values.title = attributeValue;

return 0;
endmethod;

When the class attribute ValuesSLISTEntryName is assigned a
value, its setcam... method will run. The method performs checks to
ensure the value is a valid catalog entry name, and that the SLIST
catalog entry can be created if necessary. Finally the SLIST entry is
read from the catalog.

setcamValuesSLISTEntryName:
protected method

attributeValue:update:char
return=num;

dcl list _null;
dcl char libname memname objname objtype;

* When the SLIST entry name is cleared,
* clear the list box;

if attributeValue = '' then do;
co_mdl_valuesSLIST.entryName
= attributeValue;
co_lb_values._refresh();
return 0;

end;

* Ensure the attribute value is a four
level SLIST (that can be created if neces-
sary);

6

libname = scan (attributeValue,1,'.');
memname = scan (attributeValue,2,'.');
objname = scan (attributeValue,3,'.');
objtype = scan (attributeValue,4,'.');

if objtype = '' then objtype = 'SLIST';

if libname = '' or memname = '' or
objname = '' or upcase(objtype)^='SLIST'

then do;
put attributeValue

'is not a four level .SLIST';
return 1;

end;

attributeValue = libname || '.' || memname
|| '.' || objname || '.SLIST';

if not cexist (attributeValue) then do;
_null = makelist ();
if 0 ne savelist ('CATALOG',

attributeValue, _null)
then do;

put 'WARNING: Can not save a list to'
attributeValue;

end;
_null = dellist (_null);

end;

if cexist (attributeValue) then do;
co_mdl_valuesSLIST.entryName
= attributeValue;
co_lb_values._refresh();
return 0;

end;
else

return 1;
endmethod;

Some very important hidden processing is going on here. When the
model’s (co_mdl_valuesSLIST) entryName attribute is assigned, the
model’s setcamEntryName() runs, loading the SLIST from disk to
memory. Additionally, since the model is connected to a viewer (the
list box), when the model changes itself, the list box is notified and
the list box visually renders the current list of values in the model as
items in the listbox.

OVERRIDDEN _TERM METHOD
Persistence of the list of values is the end goal of the ListOfValues

class, hence at some point the values have to be written to disk.
The most appropriate place for doing so is when the class is being
terminated as the frame is being shutdown.

TERM: PUBLIC method;
dcl num rc;

if co_mdl_valuesSLIST.entryName ne '' then
rc = savelist ('CATALOG'

, co_mdl_valuesSLIST.entryName
, co_lb_values.items);

_super ();
endmethod;

CONCLUSION
The composite class is a very useful asset to the AF developer. A
deep understanding of the new technology in SAS Version 8 is
needed to properly assess when and how often to use this class.

RECOMMENDED READING
SAS Institute Inc., SAS� Guide to Applications Development, First
Edition (55888), Cary NC, SAS Institute Inc., 1999.

Bud Whitmeyer, Observations Volume 5, Number 1: Using Region
Attachments Effectively in a FRAME Application, Cary NC, SAS
Institute Inc.

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, De-
sign Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1999.

ACKNOWLEDGEMENTS
SAS and SAS/AF are registered trademarks or trademarks of SAS
Institute Inc, in the USA and other countries. � indicates USA reg-
istration.

AUTHOR INFORMATION
Richard A. DeVenezia
9949 East Steuben Road
Remsen, NY 13438

radevenz@ix.netcom.com
http://www.devenezia.com

A sample application will be available at the author’s website.

How the Composite Definition window is invoked

