The Magnificent DO

Paul M. Dorfman

SAS Consultant
Jacksonville, FL

Q.: What is the DO statement in SAS

&5
&5
&5
&5
&5
&5
&5

Intended for?

Doing all kinds of weird stuff with arrays
Creating a perpetuum mobile

Saving programming keystrokes
Pandering to GOTO-less police
Processing sequential files

Grouping statements for block execution
Coding for job security

Q: What are these three things?

= Seqguence
= Selection

= Repetition

A: The three constructs
necessary and sufficient for
-less Programming

SEQUENCE
(SAS: Natural Control Flow)

SELECTION
(SAS: If-Then-Else / Select-End)

REPETITION
(SAS: Do-Loop, Implied Loop)

Why Is The Repetition Structure Important?

Forms basis for program automation
Code once — execute many times

Allows Iterative instruction modification
Naturally lends itself to better structured
programming

Provides for nesting periodic processes

Do-Loop: The Anatomy

Do <Index> = <From, By, To expressions> While | Until (<expression>) ;
Evaluate Index. If Index > To then go to
Evaluate While expression. If True go to

< ... SAS Iinstructions ... >
Leave active? Go to

Continue active? Go to
< ... SAS instructions ... >

Evaluate Until expression. If True go to
Add By-expression to Index

“Golden Rule”
of Programming Repetition Structures
<broken all the time>

<What’s that?>
Instructions Should Be Coded
Inside a Repetition Construct

Q.: What is a loop-modified instruction?
A.: Instruction whose effect may change as a result of
the iterative process.

Unmodified
Modified
Unmodified
Modified
Modified
Unmodified

Do J =1 To N ;
If J =1 Then Put "Beginning..."
Set DSN ;
NewVar = Date() ;
IT Not Mod(Jd,1e3) Then Put “Going...°"
A (J + Offset) =B (J) ;
IfT J = N Then Put "Over.”

Sequential File Reading / Processing: 3GLs

Explicit file-reading loop only, e.g. in COBOL.:

PERFORM WITH TEST AFTER
READ FILE AT END SET EOF TO TRUE
NOT AT END PERFORM PROCESS-RECORD
<... Other COBOL sentences ...>
END-PERFORM.

Sequential File Reading / Processing: SAS

1. Implied “observation loop”:
<abused>

2. Explicit Do-loop:
<underused>
Do Until (EoF) ;
Set [Merge, Update, Input] End = EoF ... ;

Implied Loop in Do-Loop Terms

< Populate all valued retains at compile >

Do Internal_Counter = 1 By +1 ;
< Initialize non-retains to missing ... >
N = Internal_Counter ;
Error =0,
< ... SAS statements ... >
< SET, MERGE, INPUT, UPDATE ... > ... ;
If < buffer-empty > Then Do ;
If _Error_ NOT = O Then Put _All_;
LEAVE ;
End ;
< ... SAS statements ... >
If < DELETE-statement-active > Then CONTINUE ;
If < RETURN-statement-active > Then Do ;
If < no-OUTPUT-statement-elsewhere > Then OUTPUT ;
CONTINUE ;
End ;
If < STOP-active > Then LEAVE ;
If < no-OUTPUT-statement-elsewhere > Then OUTPUT ;
If _Error_ NOT = 0 Then Put _All_;
End ;

Implied Loop vs. Explicit Loop: Single File Processing

Given a SAS data set ACCOUNTS:

Write a header to an external file OUT with current date formatted
as YYYY-MM-DD (at position 1).

Read a credit card account from a SAS data set ACCOUNTS and
select only observations containing VISA numbers (they begin with
4). Write each selected account to OUT at position 1.

After ACCOUNTS has been processed, write a trailer, with the date
formatted as YYYY-MM-DD (positions 1-10) and total number of
records in the file, excluding the header and trailer, with leading
zeroes (positions 11-20).

Single File
Implied Loop vs

Processing:
. Explicit Do-Loop

Data Null_;
Retain Date ;
If N =1 Then Do ;
Date = Date () ;
Put @1 Date YYMMDD10. ;
End ;

If EOF Then Put @ 1 Date YYMMDD10.
@11 N z10. ;
Set ACCOUNTS End = EoF ;
If ACCTNO NE: ‘4’ Then Delete ;
N++1;
Put @1 ACCTNO $16. ;
Run ;

Single File Processing:
Implied Loop vs. Explicit Do-Loop

Data Null_; Data Null_;
Retain Date ; Date = Date () ;
Put @1 Date YYMMDD10. ;
If N =1ThenDo;

Date = Date () ; Do Until (EoF) ;

Put @1 Date YYMMDD10. ; Set ACCOUNTS End = EoF ;
End ; If ACCTNO NE: ‘4’ Then Continue ;
If EOF Then Put @ 1 Date YYMMDD10. N++1;

@11 N z10. ; Put @1 ACCTNO $16. ;
End ;
Set ACCOUNTS End = EoF ;
If ACCTNO NE: ‘4’ Then Delete ; Put @ 1 Date YYMMDD10.
N++1; @11 N Z10. ;
Put @1 ACCTNO $16. ;
Run ; Run ;

Explicit Do-Loop Multiple File Processing

.. .do whatever SAS stuff you need before reading file(s)... >
. Until (EoFl) ;

[Merge, Input...] <File(s)> End = EoFl ;
..process file 1...>

..do SAS stuff after file 1...>
. Until (EoF2) ;

[Merge, Input...] <File(s)> End
..process fTile 2...>

...do SAS stuff after file2...>

. Until (EoF3) ;

[Merge, Input...] <File(s)> End
..process file 3...>

End ;
<...do SAS stuff after file3.._.>

Q.:lwantmy N _ and Error_and stuff in the log !!!
A.: OK ...

=1 By +1 Untal (EoF) ;
Error =0 ;

Implied Loop and Explicit Do-Loop as a Control-break Team
(The DoW-Loop)

Q: DoW-what ?7?77?
A: Not an industry term ... it is Whitlock... Mea culpa, lan...

Data ... ;
<...stuff done before each break event...> ;

Do <Index Specs> Until (Break _Event) ;
Set [Merge, Update, Input, ...] ;

<...stuff done for each incoming record...> ;
End ;

<...stuff done after each break-event... > ;

Q.: What Is a Break-Event?

=« Generally: Encountering any cardinal
expression value (e.g. missing) Iin an iteration

= Most often: Last record in a by-group

The DoW-Loop: Example

Data B (Keep = ID Prod Summa Count Mean)
Prod = 1 ;

Do Count = 1 By +1 Until (Last.ID)

Set A ;

By ID ;
IT Missing (Var) Then Continue ;
Prod = Prod * Var ;

MeanCount = Sum (MeanCount, 1)
Summa = Sum (Summa, Var)

End ;
If MeanCount Then Mean = Sum / MeanCount ;

* Here, 1 record per group is written automatically ;
Run ;

Q.: So what is the big DoW-deal?
A.: It is all in programming LOGIC

Actions taken before, between and after break events naturally

separated by the program in the stream-of-the-consciousness
manner.

If an action is to be done before the group is processed, simply code

it the DOW-loop. It is NOT necessary to predicate this action
by the <IF FIRST.ID> condition.

If the action is to be done , code it inside the loop.

If is has to be done after the group, like computing an average and
outputting summary values, code it after the DOW-loop.

Nesting DoW-Loops (Multi-Level Control-Break)

<...Initialize level X...>
Do X cnt = 1 By 1 Until (Last.X) ;
<...Initiralize level Y...>
Do Y cnt = 1 By 1 Until (Last.Y) ;
<...Initialize level Z...>

Do Z cnt = 1 By 1 until (Last.Z2)
Set XYZ ;
By XY Z ;
<...Aggregate at level Z...>
End ;
<...Report at level Z...>
<...Aggregate at level Y...>
End ;
<...Report at level Y.._.>
<...Aggregate at level X...>
End ;

<...Report at level X...>

Conclusion

DO

