
Using context sensitive popmenus to enter values
in a SAS/AF Data Table object

Richard A. DeVenezia

Abstract

The SAS/AF Data Table object is a stock com-
ponent that can be used as a foundational part of a
SAS/AF Frame application. The Data Table has
many built-in features, but sometimes the defaults
are not enough to make an interface truly simple for
the end-user. Extending the Data Table to allow new
and useful interaction can make an application well
received by the user community. Additionally, a
developer can reuse the extended object or object
extending techniques in other applications.

The use of the right mouse button for displaying a
context sensitive menu of choices is a well estab-
lished convention. This paper describes a technique
that overrides a SAS/AF Data Table object’s
POPUP method to allow column specific con-
text sensitive popmenu data entry. From a user’s
perspective, when a cell is right clicked a list of
allowed values is displayed and the selected value is
placed in the cell.

A Sample Scenario

An analyst is doing research on the impact of
lifestyle choices, such as smoking and diet, on
fitness. She added three columns to the data set
SASUSER.FITNESS to record information about her
group of subjects. The SMOKES column is for the
number of packs smoked a day, the DIET column is
for the diet followed at time of fitness measures and
EXERCISE is a comma-separated list of types of
regular exercises performed.

The allowed values for SMOKES range from zero to
the value entered for Max Packs. The allowed
values for the DIET and EXERCISE variables are
stored in a support data set named SASUSER.
LIFESTYL, which has columns ASPECT and
VALUE. The values of ASPECT correspond to the
column names DIET and EXERCISE.

The SASUSER.LIFESTYL data set is displayed
when the Life Style Choices button is pushed in and
SASUSER.FITNESS when the button is pushed out.

The analyst’s program is submitted from the Run
Analysis button.

Sample Front End Layout

Default Popmenu

The default popmenu,
which appears when the
right mouse button is
clicked, is designed for a
generic form of table
editing. There is no
knowledge of the life
style column contexts.

A context sensitive
popmenu will provide
selections more relevant
to the analyst’s task of
recording data.

Desired Contexts

When the right mouse button is clicked over a cell in
the Packs a Day column, a list of values from zero to
N by .5 increments should appear. The input field
Max Packs controls N.

When the right mouse button is clicked over a cell in
the Most Recent Diet column, a list of different diets
should appear.

When the right mouse button is clicked over a cell in
the Favorite Exercises column, a popmenu of
different exercises should appear. Each exercise
listed should have the word add or remove before it.
A selected exercise would then be either added to or
remove from the comma-separated list of exercise
values. Only N exercises are allowed in the comma-
separated list of exercises. N is controlled by the
input field Exercises.

Multiple Row Functionality

A quote from SAS system help at index ‘table
editor,selection features’:

"The table editor provides features that enable users to
select one or more rows or columns in the table. Selection
features determine whether multiple selected rows can be
noncontiguous, called multiple selections, or contiguous,
called an extended selection.

You enable selection features by setting attributes for the
table. In addition to determining whether multiple rows or
columns can be selected, other attributes determine whether
a row can be selected by a click on any of its columns or a
row or column can be selected by a click on its label.

Copyright (c) 1996, SAS Institute Inc., Cary, NC 27513-2414
USA. All rights reserved.

When the right mouse button is clicked over a cell in
a selection and a choice is made from a context
popmenu, that choice should be placed in each
highlighted cell in the column. This functionality will
not be provided to the Favorite Exercises column.

Support Dataset: SASUSER.LIFESTYL

This dataset is maintained as needed to modify
available choices for a context:

The table can be edited ‘in frame’ by pushing the Life
Style Choices button in.

Desired Popmenus

Based on the desired contexts and support dataset,
the popmenus should appear as follows:

Smokes Diet Exercise

Making it Happen

Getting the front end built and determining the user
interface behavior is only half the battle. A reason-

able context handling implementation must be found
amid the myriad possibilities available in SAS/AF.

Some questions that arise are:

Q: Should I use data table model SCL?
A: Model SCL is better suited for context sensitive

rendering of a value (i.e. foreground and
background colors, font, weight and style.) For
context popmenus, a label for each column
being handled, as well as a check of the
STATUS variable, would have to be put in the
model SCL. This is not very extensible.

Q: Should I subclass the data table object?
A: Subclass the data table if you wish to reuse

features in other frames (or even the same
frame) How to sub-class is not covered in this
paper.

Q: What events, if any, should be processed in the
frames SCL?

A: Frame SCL can be used to process left mouse
button events on the data table. These types of
events are generally related to selecting a region
or the first part of a ‘drag and drop.’ Doing
generic popmenu processing in a frame’s SCL is
not conducive to extensibility.

Q: Which of the 269 data table methods should I
use?

A: Use what ever it takes to get the job done.

Q: Did I call Tech Support too many times today?
A: No �

Core Concepts

� Override the data table _POPUP_ method. This
can be considered as installing an event handler.

� Attach items of information to the data table
object for use by the _POPUP_ override.
(These are per instance instance variables)

� The type of item attached can be numeric or
character.

For numeric items, the _POPUP_ override will
assume the value is an SCL list id which should be
popmenu’ed.

For character items, the _POPUP_ override will
assume the value is a method name, which can be
called. The method name value must have the
format [lib . cat .] entry [. type] : label. This value
is used in a call method statement.

The label’s method statement must conform to:
method _self_ 8 row 8 column_name $32 _pop 8;

self is an input variable whose value is the data
table object list id.

row is an input variable whose value is the row
number where the popup event occurred.
column_name is an input variable whose value is the
name of the column where the popup event occurred.
_pop is an input variable whose value is a valid SCL
list id. The list is allocated for the method by the
POPUP override method. The list should have
choice items inserted into it for selection by the user.

� The name of an item attached to the data table
object is of the form
RMB_LIST_FOR_<column_name>

A properly named and valued item attached to the
data table object can be considered as installing an
event context handler. The context handler is
dispatched by the event handler.

Per instance overrides of data table methods are
installed at run time in the frame’s INIT section.

Frame Implementation Details

The front end contains these objects:
- Data table named fitness.
- Input fields named maxPacks and nExer.
- Command push buttons named lifeStyl, run and

end.

� Override fitness’ _POPUP_ method in the INIT
section.

INIT:
call send(_frame_,'_get_widget_','fitness',tabid);
call send(tabid,'_SET_INSTANCE_METHOD_','_POPUP_',

'SASUSER.NESUG99.CONTEXT.SCL','POPUPCEL');

� Attach items of information to the data table.

Column Attach item of this type
Smokes Numeric (SCL list)
Diet Numeric (SCL list)
Exercise Character (Method name)

The SCL lists need to be created and populated
before attaching their list ids to the data table object.

INIT:
Link MaxPacks; * creates SCL list _smokes;
Link Diet; * creates SCL list _diet;
* install context handlers;
rc=setnitemn(tabid,_smokes,'RMB_LIST_FOR_SMOKES'
);
rc=setnitemn(tabid,_diet, 'RMB_LIST_FOR_DIET');
rc=setnitemc(tabid,'CONTEXT:EXERCISE',

'RMB_LIST_FOR_EXERCISE');
MAXPACKS:

* if input field is modified this section runs;
* repopulating the list of allowed values;
* clearlist is used because _smokes list id ;
* has been 'installed'.;
if _smokes
 then rc = clearlist (_smokes);
 else _smokes = makelist ();
 rc = insertc (_smokes, '.');
 do i = 0 to max (0, MAXPACKS) by 0.5;
 rc=insertc(_smokes,left(put(i,best4.)),-1);
 end;
return;
DIET:
* this section is only run once from INIT;
 _diet = makelist ();
 __lifestyl = open
('SASUSER.LIFESTYL(WHERE=(ASPECT="DIET"))');
 if __lifestyl then do;
 n = 0;
 rc=lvarlevel(__lifestyl,'CHOICE',n,_diet);
 __lifestyl = close (__lifestyl);
 end;
 rc = sortlist (_diet);
 rc = insertc (_diet, ' ');
return;

POPUP Override Method Details

The override method has to do several things:
- determine cell clicked over
- determine if the column has context handling.
- dispatch the handler
- place a value in the cell (or selection) if a

popmenu choice is made.

A cell or selection location within a data table is
described in terms of coordinate lists. These SCL
lists are documented in the online help at index
‘coordinate lists’:

All of the data table viewer methods that operate on a
particular row, column, or cell have coordinate arguments.
These arguments are SCL lists rather than simple numerics
in order to deal with multi-dimensional data, that is, nested
rows or columns. The Data Table class does not support
multidimensional data. … For the data table, these
coordinate lists contain a single integer value which
represents a row or column number in the data table.

index ‘_get_selections_’ further elucidates:

The selections returned by the _GET_SELECTIONS_
method are grouped into individual sublists, one for each
selection. Each of the sublists within the outer list contains
four named lists, START_ROW, START_COLUMN,
END_ROW, and END_COLUMN. These named lists
contain the coordinates for the particular point.

Copyright (c) 1996, SAS Institute Inc., Cary, NC 27513-2414
USA. All rights reserved.

When an entire column or row is selected the
END_ROW or END_COLUMN lists will contain the
value -1.

/***/
/* POPUPCEL: Override the data table _POPUP_ */
/* method,providing column based RMB contexts*/
/***/

length _method_ colname $40 coltype $1;

POPUPCEL:
 method plist sel 8;

* make lists to contain column coordinate lists;
_poprow = makelist ();
_popcol = makelist ();

* obtain the row and column coordinates of
* the cell where the last pop-up occured ;
call send(_self_, '_get_popup_cell_' ,

_poprow, _popcol);

* safety check: if coordinate lists are ;
* incomplete then return;
if 0=nameditem (_poprow,'1')
or 0=nameditem (_popcol,'1') then goto byebye;

* get column name cell is in;
row = getnitemn (_poprow, '1');
col = getnitemn (_popcol, '1');

call send(_self_, '_GET_DISPLAYED_COLUMN_NAME_',
col, colname);

* check for column context handler;
handlerItem = nameditem (_self_, 'RMB_LIST_FOR_'

|| colname);
if handlerItem = 0 then do;
 * uncomment call super to allow the default
 * method to run for unhandled columns;
 * call super (_self_, _method_, plist, sel);
 goto byebye;
end;

* set active cell to cell popped over to
* ensure user knows where popup is coming from;
call send(_self_, '_set_active_cell_',

_poprow, _popcol);

if row > 0 then
 link dispatch;
else do;
* This is where special handling for popups on;
* column name could occur (i.e. sorting);
* link disptch0;
end;

byebye:

_poprow = dellist (_poprow);
_popcol = dellist (_popcol);

endmethod;

*---;
dispatch:
*---;
* numeric handler items are list ids;
* callers are responsible for ensuring pop list
items are character types;
* character handler items are method names;
* callers are responsible for ensuring method
names are in A.B.C.D:E format;

* determine data set column type, for use in
context handlers;
call send(_self_, '_GET_COLUMN_ATTRIBUTE_',

 colname, 'TYPE', coltype);

* dispatch based on context handler item type;
select itemtype (_self_, handlerItem);
 when ('N') link popItemN;
 when ('C') link popItemC;
 otherwise;
end;
return;

Numeric valued (i.e. SCLI list id) context handlers
dispatched by the _POPUP_ event handler are very
easy to implement. The list has been setup for us
and we only have to check for valid list id's and if a
popmenu choice was made.

*---;
popItemN:

* get scl list id, return if an invalid list id;
_pop = getitemn (_self_, handlerItem);
if _pop > 0 and listlen (_pop) = -1 then return;

* popup the list, return if no choice is made;
choice = popmenu (_pop);
if choice > 0 link setCell;
return;

Character valued (i.e. method name) context
handlers dispatched by the _POPUP_ event handler
can be used in many creative ways. The stock
behavior of the sample scenario is implemented
below. The context method is called assuming the
method will populate an SCL list which popItemC will
display and handle. A provision is made to not do
anything after the context method is called. No post
context method handling will occur if the context
method passes back an empty list or invalid list id.

Really interesting things can be done in the context
method since the method is called passing in all the
state information that is available to the event
handler. It has enough information to pop a context
menu and place values into the table itself.

*---;
popItemC:
* character valued handler items are assumed to
be method names of format ;
* [lib . cat .] entry [. type] : label ;
* no check is made on the existance of the
method;

length popcol_method $200;

* get context method, return if ill-formed;
popcol_method = getitemc (_self_,handlerItem);
if 0 = index (popcol_method, ':') then return;

* make a list for the method to use, and keep;
* a backup of the list id, just in case the;
* method returns a different list id;
_pop = makelist ();
_pophold = _pop;

* call the method;
call method (scan (popcol_method,1,':'),
 scan (popcol_method,2,':'),
 self, row, colname, _pop);

* popup the list if populated by the method;
if listlen (_pop) > 0 then do;
 choice = popmenu (_pop);
 if choice > 0 then link setCell;
end;

* delete the SCL list passed to context method;
if _pophold ne _pop then
 _pophold = dellist (_pophold);
* delete list context method may have made;
if listlen (_pop) ne -1 then
 _pop = dellist (_pop);
return;

The setCell section implements the default behavior
for which cell(s) receive the value selected by the
user.

*---;
setCell:
* put chosen value in pop cell or in each cell;
* in pop cell column in selection;

_select = makelist ();
call send (_self_, '_GET_SELECTIONS_', _select);

popped_in_selection = 0;

* this loop will only iterate if selections made;

do i = 1 to listlen (_select);
 _rect = getiteml (_select, i);
 sr=getnitemn(getniteml(_rect,'START_ROW'),'1');
 sc=getnitemn(getniteml(_rect,'START_COLUMN'),'1');
 er=getnitemn(getniteml(_rect,'END_ROW'),'1');
 ec=getnitemn(getniteml(_rect,'END_COLUMN'),'1');

 * when pop cell is in a region put chosen value;
 * in all cells in pop cell column in region;

 if ((sc <= col <= ec) or (ec = -1))
 and ((sr <= row <= er) or (er = -1))
 then do;
 popped_in_selection = 1;

 if sr = 0 then sr = 1; * ignore head row;

 if er = -1 then do;
 * entire column was selected,
 * set er to number of rows in dataset;
 _attr = makelist ();
 rc = setnitemn(_attr,-1,'NUMBER_OF_ROWS');
 call send (_self_,

'_GET_DATASET_ATTRIBUTES_', _attr);
 er = getitemn (_attr, 1);
 _attr = dellist (_attr);
 end;

 * put chosen value in each cell in pop cell;
 * column in region ;
 do row = sr to er;
 call send (_self_, '_LOCK_ROW_', row);
 select coltype;
 when ('C') link setText;
 when ('N') link setValue;
 otherwise;
 end;
 end;

 call send (_self_, '_clear_select_');
 call send (_self_, '_set_active_cell_',

_poprow, _popcol);

 end; /* pop cell in selection region */
end; /* selection loop */

if NOT popped_in_selection then do;
 * put chosen value in popup cell;
 call send(_self_, '_LOCK_ROW_', row);
 select coltype;
 when ('C') link setText;
 when ('N') link setValue;
 otherwise;
 end;
end;

call send(_self_, '_UNLOCK_ROW_');
_select = dellist (_select, 'Y');
return;

*---;
setText:
call send(_self_, '_SET_COLUMN_TEXT_', colname,

 getitemc (_pop, choice));
return;
*---;
setValue:
call send(_self_, '_SET_COLUMN_VALUE_', colname,

input(getitemc(_pop,choice),best12.));
return;

Exercise Context Handler Method

This method is called by the POPUPCEL method
dispatching the EXERCISE column handler setup in
the frame’s INIT section.

The implementation demonstrates some techniques
to tightly couple the context with the content of other
objects on the frame. In the sample scenario, the
object nExer controls the number of comma
separate values allowed in a cell.

*--;
* This method is called due to a RMB action on ;
* a table which had its _POPUP_ method ;
* overridden by POPUPCEL, and an instance ;
* variable RMB_LIST_FOR_EXERCISE added whose ;
* value is this method name ;
* The frame containing the data table, which ;
* had its POPUP method overwritten and had the ;
* instance variable RMB_LIST_FOR_<column> added;
* with value CONTEXT:EXERCISE, must also have ;
* an SCL variable called NEXER ;

length exercise $50 anExercise $50;

EXERCISE:
method _self_ 8 row 8 column_name $32 _pop 8;

* this method will CRASH if there is no SCL;
* variable named NEXER in the frame containing;
* the data table,there is no simple way (if any)
* to determine what variables are available in a
* frames scope at run time;

* get number of comma separated exercises that
* are allowed in the EXERCISE column from the;
* variable NEXER in the data tables frame;
call send (getnitemn (_self_, '_FRAME_'),

'_GET_NUM_VAR_', 'NEXER', nexer);

* get the current EXERCISE value in the popcell;
call send (_self_, '_GET_COLUMN_TEXT_',

column_name, exercise);
exercise = trim (exercise);

* determine if any more exercises can
* be concatenated;
allow_more = (scan(exercise,nexer, ',') eq '');

* separator for when concatenating;
if scan (exercise, 1, ',') ne ''
 then add_sep = ',';
 else add_sep = '';

* put data table exercises in SCL list for
* easy searching;
_dtExercises = makelist ();
i = 1;
do while (scan (exercise, i, ',') ne '');
 rc = insertc (_dtExercises,

left(scan(exercise,i,',')), -1);
 i + 1;
end;

* put support table choices in an SCL list;
_lsExercises = makelist ();
__lifestyl = open
('SASUSER.LIFESTYL(WHERE=(ASPECT="EXERCISE"))');
if __lifestyl then do;
 n = 0;
 rc = lvarlevel (__lifestyl, 'CHOICE', n,

_lsExercises);
 __lifestyl = close (__lifestyl);
end;
nExerInLifeStyle = listlen (_lsExercises);

* add choices to remove values in _dtExercises
* not found in _lsExercises;
do i = 1 to listlen (_dtExercises);
 anExercise = getitemc (_dtExercises, i);
 if searchC(_lsExercises,anExercise,1,1,'Y')=0
 then do;
 rc = insertc (_lsExercises, 'remove ' ||

anExercise, -1);
 end;
end;

* modify the _lsExercise choices to indicate
* which can be added or should be removed;
do i = 1 to nExerInLifeStyle;
 anExercise = trim(getitemc (_lsExercises, i));
 if searchC(_dtExercises,anExercise,1,1,'Y')=0
 then do;
 * the exercise is not in pop cell,
 * therefore it can be added;
 rc = setitemc (_lsExercises, 'add ' ||

anExercise, i);
 if NOT allow_more then
 rc = setlattr (_lsExercises,'INACTIVE',i);
 end;
 else

 rc = setitemc (_lsExercises, 'remove ' ||
anExercise, i);

 end;

* pop the choices;
rc = sortlist (_lsExercises);
choice = popmenu (_lsExercises);

* add to or remove from the pop cell CSV;
if choice > 0 then do;
 anExercise = getitemc (_lsExercises, choice);
 if anExercise =: 'add ' then do;
 exercise = exercise || add_sep ||

substr (anExercise,5);
 end;
 else do;
 * remove;
 anExercise = substr (anExercise, 8);
 remove = searchc (_dtExercises, anExercise);
 exercise = '';
 add_sep = '';
 do i = 1 to listlen (_dtExercises);
 if i ne remove then do;
 if add_sep = '' then do;
 exercise = getitemc (_dtExercises,i);
 add_sep = ',';
 end;
 else
 exercise = exercise || add_sep ||

getitemc (_dtExercises,i);
 end;
 end;
 end; /* remove */

 * place the new exercise value in the popcell;
 call send (_self_, '_LOCK_ROW_', row);
 call send (_self_, '_SET_COLUMN_TEXT_',

column_name, exercise);
 call send (_self_, '_UNLOCK_ROW_');
end;

* clean up;
_lsExercises = dellist (_lsExercises);
_dtExercises = dellist (_dtExercises);

endmethod;

The method was able to place a value into the data
table by itself. The method only ‘needed’ the event
handler (POPUPCEL, the _POPUP_ override) to
make sure it was called. The value of the _pop
argument was left unchanged to inform POPUPCEL
that it should do nothing more.

Back to the Frame

The ‘in frame’ editing of the LIFESTYL data set is
accomplished by using a command push button.

The region attributes, button behavior, are set to
check box. This means a mouse click pushes the
button in and a second click is used to pop the
button out.

***;
LIFESTYL:
length state $3;
call notify ('LIFESTYL', '_GET_BORDER_STATE_',

state);
if state = 'ON' then
 call notify ('FITNESS', '_SET_DATASET_',

'SASUSER.LIFESTYL', 'EDIT', 'MEMBER');
else do;
 call notify ('FITNESS', '_SET_DATASET_',

'SASUSER.FITNESS', 'EDIT', ‘RECORD’);
 call notify ('FITNESS','_display_column_label_',

 '_all_');
end;
return;

Other Possibilities

Instead of adding one item per column, a more
generic handler could be installed. Consider an item
named ‘GENERIC_HANDLER’ of itemtype list, which
contains items such as the method to call and the
name of the dataset which contains the lookups.
The lookup table would be more abstract than the
sample LIFESTYL. It would have columns such as
VARNAME, VARVALUE and VARTYPE. If the cell
selected matches in regard to variable name and
type, then the values would be popped.

Summary

A well thought out application is only half the project.
Be assured SAS/AF provides all the tools necessary
to implement your user interface design. The
breadth and depth of SAS/AF can be daunting when
trying to find very specific information about classes
and method. SAS Institute Technical Support
personnel are among the best and can find your
needle in the haystack.

Recommended Reading

SAS Institute Inc., SAS/AF Software: FRAME Entry,
Version 6, First Edition, Cary NC, SAS Institute Inc.,
1993.

SAS Institute Inc., SAS Screen Control Language,
Version 6, Second Edition, Cary NC, SAS Institute
Inc., 1994.

SAS Institute Inc., SAS/AF Software: FRAME
Application Development Concepts, Version 6, First
Edition, Cary NC, SAS Institute Inc., 1995.

SAS Institute Inc., SAS/AF Software: FRAME Class
Dictionary, Cary NC, SAS Institute Inc., 1995.

SAS Institute Inc., Getting Started with the FRAME
Entry, Second Edition: Developing Object-Oriented
Applications, Cary NC, SAS Institute Inc., 1997.

SAS Institute Inc., Course Notes: Building SCL
Applications Using FRAME Entries, Cary NC, SAS
Institute Inc., 1996.

SAS Institute Inc., Course Notes: Application
Development with The SAS System, Release 6.12,
Cary NC, SAS Institute Inc., 1996.

SAS Institute Inc., Course Notes: Object-Oriented
Programming Using SAS/AF Software, Cary NC,
SAS Institute Inc., 1996.

SAS Institute Inc., Course Notes: Using SAS/AF
Data Table and Data Form Objects, Cary NC, SAS
Institute Inc., 1996.

Acknowledgements

SAS and SAS/AF are registered trademarks or
trademarks of SAS Institute Inc, in the USA and
other countries. indicates USA registration.

Author Information

Richard A. DeVenezia
9949 East Steuben Road
Remsen, NY 13438
radevenz@ix.netcom.com

The sample application is available in CPORT format
upon request.

	Richard A. DeVenezia
	Abstract
	A Sample Scenario
	Sample Front End Layout
	Default Popmenu
	Desired Contexts
	Multiple Row Functionality
	Support Dataset: SASUSER.LIFESTYL
	Desired Popmenus
	Making it Happen
	Core Concepts
	Frame Implementation Details
	POPUP Override Method Details
	Exercise Context Handler Method
	Back to the Frame
	Other Possibilities
	Summary
	Recommended Reading
	Acknowledgements
	Author Information

