
Doing the impossible with FSEDIT and AF:
How a screen and frame can be synchronized

Richard A. DeVenezia

Abstract

Many data entry scenarios involve two datasets
related by a key. A header dataset which contains
one observation and a detail dataset which contains
several observations per key value. Typically an AF
frame is implemented with the header information
displayed in fields above an extended table which
contains the detail information. But what happens
when the header information contains hundreds of
variables? Maintaining a frame entry with hundreds
of objects can be harrowing to say the least. An
FSEDIT screen is better suited for such large scale
data entry; a frame can still be used to enter the
detail data.

This paper describes techniques used in a
SAS/FSP FSEDIT screen which invoke a SAS/AF
FRAME. Some items of discussion are data
structures, pmenus, command parsing, window
switching using NEXT and the use of global
SAS/SCL lists.

The Problem

An inspection process collects a multitude of
parameters regarding some material tested. The
identification, properties such as size and weight,
customer test requirements and test equipment
setup are just a few. Many of the default values for
the equipment setup are maintained in lookup
tables. Each setup is used to detect and record
defects in the material.

The data collected is a crucial first step for the
Quality Assurance department, allowing internal
review and reporting selected information to
customers.

Data Sets

Two data structures were designed and
implemented as SAS datasets. The first dataset,
called the header, records the material and the test
equipment setup and has a large number of
variables (>100); the second dataset called the
detail, records the defects and has a few variables
(10). Observations in the datasets are related by a
key variable’s value. If there are no defects in the
material there are no observations in the detail
dataset.

Header
Key Variables used to relate datasets
V material Variables regarding material identification.
V test Variables regarding test equipment setup.
V spec Variables regarding procedures

controlling setup and operation. They
also describe how to classify a defect.

Detail
Key Variables used to relate datasets
Vdefect Variables which record who, when, where

and what kind of defect was detected.
The defect is also evaluated and
categorized per Vspec in the header

Dataset Relation

...

A

...

...

A-1

A-2

A-3

A-4

A-5

...

Header Detail

For each header observation there are zero or
more detail observations, related by the key
variable. In this case material identified with header
key value A has five details. This is a very typical
scenario which is presented using a typical frame.

Typical Frame
Header
Key A_____
Vars ______ ______ ______

______ ______ ______
______ ______ ______

Detail - Extended Table
A-1 ____ ____ ____ _ ___ __
A-2 ____ ____ ____ _ ___ __
A-3 ____ ____ ____ _ ___ __

This type of presentation of information is
suitable when only a few variables from a header
are to be displayed.

The difficulty lies in presenting all the variables
in the header in a consumable form and maintaining

a synchronous display of detail. All the variables
cannot be placed on one FRAME, maintaining
multiple frames to display and interact all the header
variables is tedious and troublesome. SAS Institute
has already provided an excellent tool for such
problems, it is called FSEDIT.

Development Tools

An FSEDIT screen was designed to manage the
header data and an AF FRAME was designed to
manage the detail data. PROC FSEDIT with the
modify option and the FSEDIT window with the
Local/Modify menu choice were used to enter the
FSEDIT development area. The BUILD command
was used to start the AF development area.

FSEDIT provided multi-screen capability with
numerous data subsetting, observation and variable
positioning commands for advanced users. Simple
pmenus were attached for the inspectors entering
the data. Note: There were also several secondary
tables used to populate and validate variables in
header. None of those issues are addressed in this
paper, but they are mentioned to emphasize that the
basic technique demonstrated here is useable in
complicated systems.

FSEDIT was excellent for rapid prototyping
during development while variable grouping and
coloring was changing almost daily. Also the
repeated variable feature in modify menu item #2,
Screen Modification and Field Identification, was
very handy for showing the same important
information on each screen.

SAS/AF provided object layout and a large code
space (far more than say FSVIEW equations) and all
the benefits of SCL control over data entry.

It was a challenge making these seemingly
separate SAS components interact.

Application Components

Datasets
<lib>.HEADER
<lib>.DETAIL

Catalog Entries
<lib>.INSPECT.MAIN.FRAME/SCL
<lib>.INSPECT.HEADER.SCREEN
<lib>.INSPECT.DETAIL.FRAME/SCL
<lib>.INSPECT.HEADER0.PMENU
<lib>.INSPECT.HEADER1.PMENU
<lib>.INSPECT.DETAIL.PMENU

The two applications, HEADER.screen and
DETAIL.frame, were developed separately with the
knowledge that there would be interaction later on.

They were designed to be as stand-alone as
possible for testing and debugging purposes.

The header screen comprises four pages which
are accessible via the FSEDIT commands right, left
and =<pageno> and has a PMENU attached to it.

The detail frame has a protected object to
display the key and a push-button for appending
new details. For editing each detail an extended
table named DET_LIST with a get row section
named GET_DET and a put row section named
PUT_DET was created. There is also a PMENU
attached to the frame.

The header screen is called from a simple MAIN
frame that has a few objects which set up macro
variables. One of those objects is a check box
named doDetail, when it is selected a macro
variable doDetail is set to 1; when unselected 0.
This macro variable determines whether the header
screen will start the detail frame and indicates which
PMENU to use on the screen (HEADER0 or
HEADER1). A push button on the main frame
launches the header screen.

HEADER Screen

Launched from the main:

• call EXECCMD (‘SETPMENU HEADER’ ||
symget(‘doDetail’) || ‘;’);

• call FSEDIT (‘<lib>.HEADER’,
‘<lib>.INSPECT.HEADER’);

The first statement selects which pmenu is

attached to the header screen which is started with
the second statement. See end of paper for
PMENU source code.

Several important statements are issued in the
FSEINIT section:

• call WNAME (‘HEADER’);
• depth_gain = makelist (0, ‘G’);

genv = envlist (‘G’);
genv = setniteml (genv, depth_gain,
‘INSPECTION HEADER: DEPTH_GAIN’);

• rej_criteria = makelist (0, ‘G’);
genv = envlist (‘G’);
genv = setniteml (genv, rej_criteria,
‘INSPECTION HEADER: REJ_CRITERIA’);

• if symgetN (‘doDetail’) then
call EXECCMD (‘AFA

C=<lib>.INSPECT.DETAIL.FRAME AWS=NO;’);

The WNAME statement assures we have a
known window name. There are NEXT commands
issued via detail PMENU selections which rely on
the window name. The makelist statements create
two empty lists which are then pointed to from the

global environment using the setniteml statement.
These lists are used later to communicate
parameters for evaluating and categorizing defects.
The EXECCMD statement launches the detail frame
if requested in the main.

The INIT section is the all important place where
the detail frame becomes synchronized with the
header screen. First there are links to labeled
sections which load the SCL lists depth_gain and
rej_criteria. Also, any edits which cause changes in
variables regarding depth_gain or rej_criteria will
eventually link to an appropriate labeled section in
the SCL to update the SCL lists. What values are
placed in the SCL lists is not important to this paper,
only the fact that some content is put there and will
need to be retrieved in the detail frame.

The detail frame is then given the key value to
display:

• if symgetN (‘doDetail’) then
call EXECCMD (‘NEXT DETAIL;’

|| ‘SETKEY ‘ ||
quote(key)

|| ‘;NEXT HEADER;’);

The rather complicated EXECCMD switches
control to the detail frame, and issues a custom
command SETKEY, which is parsed by the frame in
it’s main section (The custom command does not
cause an error because the frame issued a ‘control
always’ in it’s INIT section). Control then returns to
the header screen.

The SETKEY command sent to the DETAIL
frame, via EXECCMD, looks like the following:

SETKEY “XYZZY A”

The key value part of the command is enclosed
in quotes because the key value may have
embedded spaces. The WORD function used in the
DETAIL frame to parse the command line will see
the command as two words, making it easy to
extract the key value. The key value is then used in
a where statement.

The FSETERM section contains statements to
delete SCL lists and end the detail frame:

• depth_gain = dellist (depth_gain);
genv = envlist (‘G’);
genv = delniteml (genv, ‘INSPECTION
HEADER: DEPTH_GAIN’);

• rej_criteria=dellist(rej_criteria);
genv = envlist (‘G’);
genv = delniteml (genv, ‘INSPECTION
HEADER: REJ_CRITERIA’);

• if symgetN (‘doDetail’) then
call EXECCMDI (‘NEXT DETAIL; ENDNOW;

END; NEXT HEADER;’);

The EXECCMDI statement switches to the detail
frame, issues a custom command ENDNOW, issues
an END and returns control to the header screen.

DETAIL Frame

Like the FSEINIT section of the header screen
the INIT section of the detail frame names the
window:

• call WNAME (‘DETAIL’);
• _detail = open (‘<lib>.DETAIL’,‘u’);
• call SET (_detail);
• control always;
• noEnd = 1;

The detail dataset must be opened explicitly in
the frame application. The header dataset is
opened automatically when the main frame issues
the ’call FSEDIT’. The call SET statement
causes automatic data value transfer between the
dataset data vector and the SCL data vector. The
control statement allows the frame to run without an
error when a custom command is issued.

Since the detail frame is launched from the
header, it is appropriate that the frame cannot close
with the just an END or CANCEL command. A
custom command ENDNOW must be issued first.
(Note: The ENDNOW command is issued in the
FSETERM section of the header screen.) The
noEnd variable is examined in the TERM section of
the frame, control is returned to the frame if
noEnd=1.

The MAIN section processes the custom
commands issued by the header screen or the detail
PMENU:

• select (word(1, ‘U’));
when (‘SETKEY’) do;
call nextword();
rc=where(_detail,‘key=‘||quote(word(1)));
call notify(‘DET_LIST’,‘_NEED_REFRESH_’);

end;
when (‘ENDNOW’) noEnd = 0
when (‘DELETE’) link DELETE;

end;

• call nextword();

When the SETKEY command is issued, the
where on the detail data is reapplied using the
specified key value, and the extended table

DET_LIST is instructed to redisplay itself, causing
the observations of the new key to appear.

When the ENDNOW command is issued the flag
variable controlling the TERM section, noEnd, is set
to 0.

When the DELETE command is issued a
labeled section is run. The details of the delete will
not be discussed.

The TERM section closes the detail dataset if
allowed:

• if noEnd then do;
status = ‘R’;
return;

end;
• _detail = close (_detail);

If noEnd is 1 then control is returned to the
frame by setting the _status_ variable to R.

The get row section GET_DET reads
observations from the detail dataset and populates
the extended table automatically due to the earlier
call SET:

• if fetchobs (_detail, _CURROW_) then
call notify

(‘DET_LIST’,‘_ENDTABLE_’);

The put row section PUT_DET updates
observations when a row in the extended table has
had one or more objects modified:

• rc =
fetchobs(_detail,_CURROW_,‘NOSET’);

• rc = update (_detail);

The fetchobs uses the NOSET option so the
newly modified field values do not get overwritten
automatically by the fetch, due to earlier call SET.
The fetchobs essentially positions a pointer to the
appropriate observation and the update writes the
current variable values to the observation.

The global SCL lists pointed to by the global
environment list items named INSPECTION
HEADER: DEPTH_GAIN and INSPECTION
HEADER: REJ_CRITERIA are used in object
named sections. Two of the several objects in the
extended table row are named depth and eval.

• depth:
genv = envlist (‘G’);

depth_gain = getniteml (genv,
‘INSPECTION HEADER: DEPTH_GAIN’);
...

return;
• eval:

genv = envlist (‘G’);
rej_criteria = getniteml (genv,

‘INSPECTION HEADER: REJ_CRITERIA’);
...

return;

In both cases, a global SCL list populated in the
header screen is referenced, by obtaining a pointer
to the SCL list from the global environment list using
getniteml. Each labeled section further uses the
SCL list obtained to set another variables value
according to an inspection procedures rules. Also,
since an object in an extended table row was
modified, control will pass to the PUT_DET section
where the new variable values are written to the
detail dataset.

Conclusion

SAS offers two application development tools
SAS/FSP FSEDIT and SAS/AF FRAME which are
able to interact using a combination of display
manager commands and custom commands.
Furthermore, application specific information can be
passed between components using global SCL lists.

Author

Richard DeVenezia
9949 East Steuben Road
Remsen NY 13438.
(315) 831-4101.
radevenz@ix.netcom.com

A SAS Institute Quality Partner with SGS Statistical
Services.

References

SAS, SAS/FSP, SAS/AF, SAS/SCL,
SAS/SHARE and the Quality Partner logo are
trademarks of SAS Institute Inc.

The Implementation

At submittal time, after being in operation for approximately six months, 2007 setups and 995 defects had
been recorded. The header (setups) has 148 variables and an observation length of 625 bytes. The detail
(defects) has 13 variables and an observation length of 59 bytes. At this time the datasets are not compressed,
and are in libraries managed by SAS/SHARE to allow concurrent access to the data.

Header Screen #1

+SETUP---Obs 0 Screen 1+
| ______ ____ ____ _______ _______ __________ _ Setup By ____ |
| Size Grade Alloy MillOrd Mfg. No Billet Date __/__/__ |
| |
| ______ Inspection Size __ Pieces, Weight _____ |
| |
| SMC PC ___ rev __ |
| Class __ rev __ Scan Plan _____ |
| |
| Immersion Tank Number _ |
| |
| Pulse Rep. Rate Setting __ |
| Surface Speed ___ "/sec |
| |
| Xducer 1 | Xducer 2 | Xducer 3 | Xducer 4 |
| ---------+-----------+-----------+--------- |
Instrument Serial # ________	________	________	________
Transducer Serial # ________	________	________	________
Transducer Frequency ____ MHz	____ MHz	____ MHz	____ MHz
@ Setting ____ MHz	____ MHz	____ MHz	____ MHz
Transducer Diameter ________	________	________	________
Comments __			
__			
__			
+---+

Header Screen #2

+SETUP---Obs 0 Screen 2+
| ______ ____ ____ _______ _______ __________ _ Setup By ____ |
| Size Grade Alloy MillOrd Mfg. No Billet Date __/__/__ |
| Gain for |
___ % BR Ref Standard ___ dB	___ dB	___ dB	___ dB
___ % BR Material ___ dB	___ dB	___ dB	___ dB
Attenuation Compensat'n ___ dB	___ dB	___ dB	___ dB
Effect. Beam Widths __ /16"	__ /16"	__ /16"	__ /16"
Water Path ____ "	____ "	____ "	____ "
Index Distance _____ "/revolution Factor= ____			
SMC PC ___ rev __ Class __ rev __ Scan Plan _____			
Artific'l Defect _ __	_ __	_ __	_ __
Alarm Ht. / Pip Ht. __ / ___	__ / ___	__ / ___	__ / ___
Rejection Criteria ___ / ___	___ / ___	___ / ___	___ / ___
(Single / Multiple)			
Uncomp. Scanning Gain __ dB	__ dB	__ dB	__ dB
Noise Level Range (%) __ to __	__ to __	__ to __	__ to __
Dynamic Alarm Check _ (PFN)	_ (PFN)	_ (PFN)	_ (PFN)
(Pass, Fail, or N.A.)			
Comments __			
__			
__			
+---+

Header Screen #3

+SETUP---Obs 0 Screen 3+
| ______ ____ ____ _______ _______ __________ _ Setup By ____ |
| Size Grade Alloy MillOrd Mfg. No Billet Date __/__/__ |
| |
| @Insp ______ ___ _____ Ref Std Number |
| |
| Channel _ Uncomp. |
| Metal DAC Eval Micro DAC |
| Travel Amp% Gain Comp. uSec Gain |
| ______ ___ ___ __ ___ ____ |
| ______ ___ ___ __ ___ ____ |
| ______ ___ ___ __ ___ ____ |
| |
| Channel _ Uncomp. |
| Metal DAC Eval Micro DAC |
| Travel Amp% Gain Comp. uSec Gain |
| ______ ___ ___ __ ___ ____ |
| ______ ___ ___ __ ___ ____ |
| |
| Top Stamp _______ |
| Bot Stamp _______ |
| Length _______ (measured) |
| |
| Comments __ |
| __ |
| __ |
+---+

Header Screen #4

+SETUP---Obs 0 Screen 4+
| ______ ____ ____ _______ _______ __________ _ Setup By ____ |
| Size Grade Alloy MillOrd Mfg. No Billet Date __/__/__ |
| |
| Signed Off By ____ |
| Date __/__/__ |
| |
| Used in Daily Report __/__/__ |
| |
| |
| QA Review |
| |
| Acceptable? _ (Y/N) |
| By ________ |
| Date __/__/__ |
| |
| |
| |
| |
| |
| |
| |
| |
| Comments __ |
| __ |
| __ |
+---+

Detail Frame

+DEFECTS---+
| |
| Billet __________ _ |
| |
| |
| |
| C Compen- |
| h Defect sated |
| a Inches from Butt Defect Ht. Deepest Eval Rej- |
| N Who Date n Start End Scan Eval Type Depth Gain ect |
| 1 ____ __/__/__ _ _______ _______ ___ ___ ___ _____ __ _ |
| 2 ____ __/__/__ _ _______ _______ ___ ___ ___ _____ __ _ |
| 3 ____ __/__/__ _ _______ _______ ___ ___ ___ _____ __ _ |
| 4 ____ __/__/__ _ _______ _______ ___ ___ ___ _____ __ _ |
| 5 ____ __/__/__ _ _______ _______ ___ ___ ___ _____ __ _ |
| |
+--+

PMENU appearance

Header.screen

File View
Print Screen Screen 1 - Transducers
---------------- Screen 2 - Parameters
End Screen 3 - Reference

Screen 4 - QA Review

Details

Detail.frame

File View Special
Print Screen Screen 1 - Transducers Delete a detail observation
---------------- Screen 2 - Parameters
End Screen 3 - Reference

Screen 4 - QA Review

PMENU commands

The commands issued by PMENU selections are an important part of the application. They issue the FSEDIT
command =<pageno> and the Display Manager command NEXT.

proc pmenu cat=<lib>.inspect;

menu HEADER0; * Does not have details option;

item 'File' menu=file;
item 'View' menu=view;

menu file;
item 'Print Screen' mnemonic='P' selection=PRINT;
separator;
item 'End' mnemonic='E';
selection PRINT 'SPRINT';

menu view;
item 'Screen 1 - Transducers' mnemonic='1' selection=_1;
item 'Screen 2 - Parameters' mnemonic='2' selection=_2;
item 'Screen 3 - Reference' mnemonic='3' selection=_3;
item 'Screen 4 - QA Review' mnemonic='4' selection=_4;
selection _1 '=1';
selection _2 '=2';
selection _3 '=3';
selection _4 '=4';

run;

menu HEADER1; Has detail option;

item 'File' menu=file;
item 'View' menu=view;

menu file;
item 'Print Screen' mnemonic='P' selection=PRINT;
separator;
item 'End' mnemonic='E';
selection PRINT 'SPRINT';

menu view;
item 'Screen 1 - Transducers' mnemonic='1' selection=_1;
item 'Screen 2 - Parameters' mnemonic='2' selection=_2;
item 'Screen 3 - Reference' mnemonic='3' selection=_3;
item 'Screen 4 - QA Review' mnemonic='4' selection=_4;
separator;
item 'Details' mnemonic='D' selection=detail;
selection _1 '=1';
selection _2 '=2';
selection _3 '=3';
selection _4 '=4';
selection detail 'NEXT DETAIL';

run;

menu DETAIL;

item 'File' menu=file;
item 'View' menu=view;
item 'Special' menu=special;

menu file;
item 'Print Screen' mnemonic='P' selection=PRINT;
separator;
item 'End' mnemonic='E' selection=END;
selection PRINT 'SPRINT;';
selection END 'NEXT HEADER;END;';

menu view;
item 'Header Screen 1 - Transducers' mnemonic='1' selection=_1;
item 'Header Screen 2 - Parameters' mnemonic='2' selection=_2;
item 'Header Screen 3 - Reference' mnemonic='3' selection=_3;
item 'Header Screen 4 - QA Review' mnemonic='4' selection=_4;
selection _1 'NEXT HEADER;=1;';
selection _2 'NEXT HEADER;=2;';
selection _3 'NEXT HEADER;=3;';
selection _4 'NEXT HEADER;=4;';

menu special;
item 'Delete a detail observation' mnemonic='D' selection=delete;
selection delete 'DELETE';

run;
quit;

	Doing the impossible with FSEDIT and AF:�How a screen and frame can be synchronized
	Richard A. DeVenezia
	Abstract
	The Problem
	Data Sets
	Header

	Development Tools
	Application Components
	HEADER Screen
	DETAIL Frame
	Conclusion
	Author
	References
	The Implementation
	Header Screen #1
	Header Screen #2
	Header Screen #3
	Header Screen #4
	Detail Frame
	PMENU appearance
	PMENU commands

