Round Robin Tournament Analysis - First Fit Musings

Richard A. DeVenezia
richard@devenezia.com
Updated: 8/15/2003
This document organizes my thoughts on some of the mathematics that need understanding to implement a first fit algorithm to schedule a round robin tournament. There are other, much simpler, algorithms that work on the concept of cycling. The cycling algorithm is not discussed here.

Definition:
A tournament schedule, S_{T}, is an arrangement of an even number of n items whose unique pairwise combinations are organized into $n-1$ groups of $n / 2$ pairs, such that each group contains unique items.
number of items: n
number of groups: $n-1$
number of pairs in a group: $m=\frac{n}{2}$
number of pairs in tournament: $n_{p}={ }_{n} C_{2}=\binom{n}{2}=\frac{n!}{2!(n-2)!}=\frac{n(n-1)}{2}=(n-1) \times m$

Let each item be uniquely identified by a number between 1 and n.
Let $p_{i j}$ indicate a pairing between items i and $j, 0<i<j$
Let the value of $p_{i j}$ be an integer that uniquely identifies the pair in a sequence, $1 \leq p_{i j} \leq n_{p}$.

Consider P that organizes these identifications.
$P=\left[\begin{array}{cccc}\cdot & p_{12} & \cdots & p_{1 n} \\ \cdot & \cdot & \ddots & \vdots \\ \vdots & \ddots & \cdot & p_{(n-1) n} \\ \cdot & \cdots & \cdot & \cdot\end{array}\right]_{n \times n}$

Let $p_{i j}=E(i, j)$ be the enumerating mapping function.
Note: There are n_{p} ! possible mappings since E is an arbitrary unique mapping of n_{p} pairs.

Consider one such function: E_{U}, the left to right, top to bottom, monotonic pair identifying enumerator.

$$
E_{U}=\left[\begin{array}{cccc}
\cdot & 1 & 2 & \ldots
\end{array} c c-1 ~\left(\begin{array}{ccc}
\cdot & \cdot & n \\
\cdot & n-1+n-2 \\
\cdot & \cdot & \cdot \\
\vdots & \ddots & \vdots \\
\cdots & \ddots & \ddots
\end{array} n_{p}\right.\right.
$$

$E_{U}(0, n)=0$
$E_{U}(i, j)=E_{U}(i-1, n)+j-i ; \quad i=1 . . n-1, j=i+1 . . n$

Define S_{x}, a schedule matrix containing n_{p} entries.

$$
S_{x}=\left[\begin{array}{ccccc}
S_{11} & \ldots & S_{1 j} & \ldots & S_{1 m} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
s_{i 1} & \ddots & s_{i j} & \ddots & s_{i m} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
s_{(n-1) 1} & \ldots & S_{(n-1) j} & \ldots & s_{(n-1) m}
\end{array}\right]_{(n-1) \times m}
$$

where $s_{i j} \in E, s_{i j}=E\left(i^{\prime}, j^{\prime}\right)$
S_{x} represents any possible arrangement of pair items, not necessarily a tournament schedule. $s_{i j}=E\left(i^{\prime}, j^{\prime}\right)$ means that the values in S_{x} are found in E by look up. Consider an arbitrary S_{x} when $n=6: \quad s_{3,5}=10=E_{U}(4,5) ; i=3 ; j=5 ; i^{\prime}=4 ; j^{\prime}=5$.

The purpose of the first fit algorithm is to examine arrangements of $s_{i j}$ selected from enumerations of i^{\prime}, j^{\prime} pairs until the conditions of a tournament schedule are met.

Question: What kind of space is the first fit algorithm going to work in ?
Let $S^{*}=$ the set of all S_{x}, there are n_{p} ! matrices in S^{*}. Each $S_{x} \in S^{*}$ corresponds to one of the n_{p} ! permutations of the sequence of numbers generated by E.

Let group $g_{i}=\left\{s_{i 1}, \ldots, s_{i m}\right\}$
Define equivalence $S_{x} \equiv S_{y}$ meaning g_{i}^{x} is permutable to g_{j}^{y}.
Define a partition of S^{*} as all $S_{x} \equiv S_{y}$

In other words, two matrices in S^{*} are in the same partition and are equivalent if they can be made identical by rearranging $s_{i j}$ within a group and rearranging groups g_{i} within S_{x}. (i.e. group-wise rearrangement after within group rearrangement.)

Question: How many partitions are contained in S^{*}, and how many S_{x} are contained in a partition?

Consider a specific S_{x} composed of $g_{i} ; i=1 . . n-1$
There are $m!^{(n-1)}$ within group arrangements.
Each group can be permuted m ! ways. There are $n-1$ groups. If the group order is locked then S_{x} was selected from a set of $m!^{(n-1)}$ different forms. I.e. group 1 is 1 of m ! choices, group 2 is 1 of $m!$, ... group $n-1$ is 1 of m ! choices, $m!\times m!\times \ldots \times m$! $=m!^{(n-1)}$ When the group order is unlocked there are $(n-1)$! group arrangements.

I speculate that any S_{x} is in a partition containing $m!^{(n-1)}(n-1)$! equivalent matrices.
I further speculate the number of possible partitions to be
$\frac{n_{p}!}{m!^{(n-1)}(n-1)!}=\frac{(m(n-1))!}{m!^{(n-1)}(n-1)!}$ possible partitions
As for factoring the above, only vague ideas about decomposition and prime number distributions come to mind.

If a tournament schedule matrix exists it must be within a partition of $m!^{(n-1)}(n-1)$! variations. There is always at least one solution partition (the undiscussed cyclic algorithm guarantees that). I do not know if there is only one solution partition or what conditions might be required for multiple solution partitions.
S_{T} is a tournament schedule if and only if the $\left(i^{\prime}, j^{\prime}\right)^{\prime} s$ of E of $s_{i 1} \cdots s_{i M}$ are unique for each $i=1 . . n-1$.

Question: Roughly, what does the algorithm do?
Consider a binary value n bits longs. Each bit corresponds to an item. The value is 2 raised to the power of one less than the item number.

Item	Binary
Number	Value
1	000001
2	000010
3	000100
4	001000
5	010000
6	100000

Let GROUP be an n bit value that tracks items planned for a group. When all the bits of GROUP are on then all the items have been scheduled for a group.

Consider an enumeration vector of item pairs. Each element of the vector has two fields One and Two. The fields contain the items that are paired. The enumeration vector is the pool from which pairs are taken from and tested for suitability in the current group.

Pair	One	Two	Items	One OR	Two
1	000001	000010	1,2	000011	
2	000001	000100	1,3	000101	
3	000001	001000	1,4	001001	
4	000001	010000	1,5	010001	
5	000001	100000	1,6	100001	
6	000010	000100	2,3	000110	
7	000010	001000	2,4	001010	
8	000010	010000	2,5	010010	
9	000010	100000	2,6	100010	
10	000100	001000	3,4	001100	
11	000100	010000	3,5	010100	
12	000100	100000	3,6	100100	
13	001000	010000	4,5	011000	
14	001000	100000	4,6	101000	
15	010000	100000	5,6	110000	

GROUP is built up incrementally by selecting pairs from the enumeration vector and testing them. If they 'fit' they are added to a plan vector. If they don't fit, the next pair in the enumeration vector is tested. If the enumeration vector is exhausted without a pair being added to the plan vector, then the last pair in the plan vector is 'unplanned' and the hunt continues using the next pair of the enumeration vector.

When a new pair is under consideration the ONE and TWO values of the pair are AND'd with GROUP. A non-zero result means one of the items in the pair is already planned and thus the pair is not suitable. A zero result means neither item has been planned and the pair can be added to the plan vector.
When a pair is planned (ONE or TWO) is OR'ed to GROUP.
When a pair has to be unplanned NOT (ONE OR TWO) is AND'ed to GROUP.
Sample of the sequence number generator for the values of $p_{i j}$

$\mathrm{n}=6$							
	0	1	2	3	4	5	6
0		0					
1		.	1	2	3	4	5
2		.		5	6	7	9
i 3		.			8	9	12
4						10	14
5		.	.			.	15
6		.					

Problem space

n	n-1	m	np	$n \mathrm{n}!/$ ($\left.\mathrm{m} \mathrm{l}^{\wedge}(\mathrm{n}-1)(\mathrm{n}-1)!\right)$	\# of partitions ?	\# in partition ?
2	1	1	1	1	1	1
4	3	2	6	$\begin{gathered} (1)(1) \\ 65432 \\ (222)(32) \end{gathered}$	15	48
6	5	3	15	$\begin{gathered} 15141312111098765432 \\ (66666)(5432) \end{gathered}$	1,401,400	933,120
8	7	4	28	$\begin{aligned} & 282726252423222120191817 \\ & 1615141312111098765432 \\ & (24242424242424)(765432) \end{aligned}$	13,189,599,057,009,400	23,115,815,976,960

Factorial factorization Prime power matrix								
nlp	2	3	5	7	11	13		1923
1								
2	1							
3	1	1						
4	3	1						
5	3	1	1					
6	4	2	1					
7	4	2	1	1				
8	7	2	1	1				
9	7	4	1	1				
10	8	4	2	1				
11	8	4	2	1	1			
12	10	5	2	1	1			
13	10	5	2	1	1	1		
14	11	5	2	2	1	1		
15	11	6	3	2	1	1		
16	15	6	3	2	1	1		
17	15	6	3	2	1		1	
18	16	8	3	2	1	1	1	
19	16	8	3	2	1	1	1	1
20	18	8	4	2	1	1	1	1
21	18	9	4	3	1	1		1
22	19	9	4	3	2	1	1	1
23	19	9	4	3	2	1	1	11
24	22	10	4	3	2	1	1	1
	23	10	5	3	2	1	,	1

