Round Robin Tournament Analysis - First Fit Musings

Richard A. DeVenezia richard@devenezia.com Updated: 8/15/2003

This document organizes my thoughts on some of the mathematics that need understanding to implement a **first fit** algorithm to schedule a round robin tournament. There are other, much simpler, algorithms that work on the concept of cycling. The cycling algorithm is not discussed here.

Definition:

A tournament schedule, S_T , is an arrangement of an even number of n items whose unique pairwise combinations are organized into n-1 groups of n/2 pairs, such that each group contains unique items.

number of items: nnumber of groups: n-1number of pairs in a group: $m = \frac{n}{2}$

number of pairs in a group: $m - \frac{1}{2}$

number of pairs in tournament: $n_p = C_2 = \binom{n}{2} = \frac{n!}{2!(n-2)!} = \frac{n(n-1)}{2} = (n-1) \times m$

Let each item be uniquely identified by a number between 1 and n. Let p_{ij} indicate a pairing between items i and j, 0 < i < jLet the value of p_{ij} be an integer that uniquely identifies the pair in a sequence, $1 \le p_{ij} \le n_p$.

Consider P that organizes these identifications.

$$P = \begin{bmatrix} \ddots & p_{12} & \cdots & p_{1n} \\ \vdots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & p_{(n-1)n} \\ \vdots & \cdots & \vdots & \vdots \end{bmatrix}_{n \times n}$$

Let $p_{ii} = E(i, j)$ be the enumerating mapping function.

Note: There are $n_p!$ possible mappings since E is an arbitrary unique mapping of n_p pairs.

Consider one such function: $E_{\scriptscriptstyle U}$, the left to right, top to bottom, monotonic pair identifying enumerator.

$$\begin{split} &E_U(0,n) = 0 \\ &E_U(i,j) = E_U(i-1,n) + j-i; \qquad i = 1..n-1, \, j = i+1..n \end{split}$$

Define $S_{_{\mathrm{x}}}$, a schedule matrix containing $n_{_p}$ entries.

$$S_{x} = \begin{bmatrix} s_{11} & \cdots & s_{1j} & \cdots & s_{1m} \\ \vdots & \ddots & \ddots & \vdots \\ \hline s_{i1} & \ddots & s_{ij} & \ddots & s_{im} \\ \hline \vdots & \ddots & \ddots & \vdots \\ \hline s_{(n-1)1} & \cdots & s_{(n-1)j} & \cdots & s_{(n-1)m} \end{bmatrix}_{(n-1) \times m}$$
 where $s_{ij} \in E$, $s_{ij} = E(i', j')$

 S_x represents any possible arrangement of pair items, not necessarily a tournament schedule. $s_{ij} = E(i', j')$ means that the values in S_x are found in E by look up. Consider an arbitrary S_x when n = 6: $s_{3,5} = 10 = E_U(4,5)$; i = 3; j = 5; i' = 4; j' = 5.

The purpose of the first fit algorithm is to examine arrangements of s_{ij} selected from enumerations of i', j' pairs until the conditions of a tournament schedule are met.

Question: What kind of space is the first fit algorithm going to work in ?

Let S^* = the set of all S_x , there are $n_p!$ matrices in S^* . Each $S_x \in S^*$ corresponds to one of the $n_p!$ permutations of the sequence of numbers generated by E.

Let group $g_i = \{s_{i1}, \dots, s_{im}\}$

Define equivalence $S_x \equiv S_y$ meaning g_i^x is permutable to g_j^y .

Define a partition of S^* as all $S_x \equiv S_y$

In other words, two matrices in S^* are in the same partition and are equivalent if they can be made identical by rearranging s_{ij} within a group and rearranging groups g_i within S_r . (i.e. group-wise rearrangement after within group rearrangement.)

Question: How many partitions are contained in S^{st} , and how many $S_{\scriptscriptstyle X}$ are contained in a partition?

Consider a specific S_x composed of $g_i; i=1..n-1$ There are $m!^{(n-1)}$ within group arrangements. Each group can be permuted m! ways. There are n-1 groups. If the group order is *locked* then S_x was selected from a set of $m!^{(n-1)}$ different forms. I.e. group 1 is 1 of m!choices, group 2 is 1 of m!, ... group n-1 is 1 of m! choices, $m! \times m! \times ... \times m! = m!^{(n-1)}$ When the group order is *unlocked* there are (n-1)! group arrangements. I speculate that any S_x is in a partition containing $m!^{(n-1)}(n-1)!$ equivalent matrices. I further speculate the number of possible partitions to be $\frac{n_{p}!}{m!^{(n-1)}(n-1)!} = \frac{(m(n-1))!}{m!^{(n-1)}(n-1)!} \text{ possible partitions}$

As for factoring the above, only vague ideas about decomposition and prime number distributions come to mind.

If a tournament schedule matrix exists it must be within a partition of $m!^{(n-1)}(n-1)!$ variations. There is always at least one solution partition (the undiscussed cyclic algorithm guarantees that). I do not know if there is only one solution partition or what conditions might be required for multiple solution partitions.

 S_T is a tournament schedule if and only if the (i', j')'s of E of $s_{i1} \cdots s_{iM}$ are unique for each i = 1..n - 1.

Question: Roughly, what does the algorithm do?

Consider a binary value n bits longs. Each bit corresponds to an item. The value is 2 raised to the power of one less than the item number.

Item Binary Number Value 1 000001 2 000010 3 000100 4 001000 010000 5 100000 6

Let GROUP be an n bit value that tracks items planned for a group. When all the bits of GROUP are on then all the items have been scheduled for a group.

Consider an enumeration vector of item pairs. Each element of the vector has two fields *One* and *Two*. The fields contain the items that are paired. The enumeration vector is the pool from which pairs are taken from and tested for suitability in the current group.

Pair	One	Two	Items	One OR Two
1	000001	000010	1,2	000011
2	000001	000100	1,3	000101
3	000001	001000	1,4	001001
4	000001	010000	1,5	010001
5	000001	100000	1,6	100001
б	000010	000100	2,3	000110
7	000010	001000	2,4	001010
8	000010	010000	2,5	010010
9	000010	100000	2,6	100010
10	000100	001000	3,4	001100
11	000100	010000	3,5	010100
12	000100	100000	3,6	100100
13	001000	010000	4,5	011000
14	001000	100000	4,б	101000
15	010000	100000	5,6	110000

GROUP is built up incrementally by selecting pairs from the enumeration vector and testing them. If they 'fit' they are added to a plan vector. If they don't fit, the next pair in the enumeration vector is tested. If the enumeration vector is exhausted without a pair being added to the plan vector, then the last pair in the plan vector is 'unplanned' and the hunt continues using the next pair of the enumeration vector.

When a new pair is under consideration the ONE and TWO values of the pair are AND'd with GROUP. A non-zero result means one of the items in the pair is already planned and thus the pair is not suitable. A zero result means neither item has been planned and the pair can be added to the plan vector. When a pair is planned (ONE or TWO) is OR'ed to GROUP.

When a pair has to be unplanned NOT (ONE OR TWO) is AND'ed to GROUP.

Sample of the sequence number generator for the values of $\ensuremath{p_{ij}}$

n=	=6				i				5	
		0	1	2	3	4	5	6		
	0		0							
	1			1	2	3	4	5		
	2				5	6	7	9		
i	3					8	9	12		
	4						10	14		
	5							15		
	6									
I	-									
Pr	ob	Lem	spa	ace						
	n	n-1	- 1	m	n	С		np! / (m!^(n-1) (n-1)!)	# of partitions ?	# in partition ?
	2	1		1	1			1	. 1	. 1
								(1)(1)		
	4	3		2	6	;		65432	15	48
								(222)(32)		
	6	5 3 15 15			15 14 13 12 11 10 9 8 7 6 5 4 3 2	1.401.400	933.120			
								(66666)(5432)	, - ,	, -
	8	7		4	28	8	2	8 27 26 25 24 23 22 21 20 19 18 1	7 13.189.599.057.009.400	23.115.815.976.960
							1	6 15 14 13 12 11 10 9 8 7 6 5 4 3	2	-, -,,,
							(24 24 24 24 24 24 24 24) (7 6 5 4 3 2	2)	
							``		,	

Int	ceg	jer	f	ac	toı	îiz	at	ior	n				Fac	to:	ria	11	fa	ctc	pri	zat	cic	n
Prime power matrix				Prime power matrix																		
n\p	2	3	5	7	11	13	17	19	23				n\p	2	3	5	7	11	13	17	19	23
1													1									
2	1												2	1								
3		1											3	1	1							
4	2												4	3	1							
5			1										5	3	1	1						
6	1	1											6	4	2	1						
7				1									7	4	2	1	1					
8	3												8	7	2	1	1					
9		2											9	7	4	1	1					
10	1		1										10	8	4	2	1					
11					1								11	8	4	2	1	1				
12	2	1											12	10	5	2	1	1				
13						1							13	10	5	2	1	1	1			
14	1			1									14	11	5	2	2	1	1			
15	·	1	1										15	11	6	3	2	1	1			
16	4	·	·										16	15	6	3	2	1	1			
17	•						1						17	15	6	3	2	1	1	1		
18	1	2					•						18	16	8	3	2	1	1	1		
19	•	-						1					19	16	8	3	2	1	1	1	1	
20	2		1										20	18	8	4	2	1	1	1	1	
20	2	1	'	1									21	18	9	4	3	1	1	1	1	
21	1	1		1	1								22	19	9	4	3	2	1	1	1	
22	1				1				4				23	19	9	4	3	2	1	1	1	1
23	2	4							I				24	22	10	4	3	2	1	1	1	1
24	3	I											25	23	10	5	3	2	1	1	1	1
25	1		1																			