
SAS® Explorer: Use and Customization
Richard A. DeVenezia, Independent Consultant

ABSTRACT
This paper describes the functioning of the SAS® Explorer window, the details of

customization and strategies for managing customizations.

Explorer
The Explorer motif is one with which almost everyone is familiar; a left hand panel

contains a tree view, and a right hand panel contains a list view. The tree view contains nodes
that can be opened and closed. The list view contains items corresponding to the node actively
selected in the tree view. The items can be displayed as icons or as details, and they can be
sorted. The tree view panel can be turned off when focus needs to be concentrated on the
items.

This motif is the basis of the SAS® Explorer Window. A wide variety of interaction with
SAS tables, catalogs, and applications is only a point and click away.

SAS Environment
The root of the SAS Explorer is the SAS Environment. This node may contain six

components: Libraries, File Shortcuts, Favorite Folders, My Computer, Results and Metadata
Servers. The first four are displayed by default.

The Explorer Options dialog is used to select
which components are active. The General tab
contains a check box for each component.

The dialog is raised by using the Explorer
window menu selection Tools / Options /
Explorer..., or by entering the Explorer window
command EXPOPT.

The state of each component's selection is
stored in the SAS Registry beneath the path [CORE \ EXPLORER \ INIT]

The SAS Explorer operates in the following two viewing modes:

• Explorer view – both the tree and list are visible.

• Contents Only view – only the list is visible.

You can switch between these modes by using menu View/Show Tree, by issuing the TREE

1

 command, or by clicking on the Toggle Tree toolbar icon. The list displays items in one of
four modes: Large Icons, Small Icons, List, Details. You can select the mode you want using
the View menu, or by issuing the appropriate command: Largeview, Smallview, Details off,
Details on

Libraries
The detail pane displays the libnames that are currently assigned. Each item listed

corresponds to an assigned library (libname). The items are displayed in one of four selectable
modes: Large Icons, Small Icons, List, Details. When in details mode, the items can be sorted
by Name, Engine, Type or Host Path Name. Sort by clicking on a column header; click again to
reverse the sort order.

Tree with node expanded, Details off Tree off, Details on

Contents of a library
The detail pane displays the members

of a libname. The members shown are items
such as tables, views and catalogs. Each item
listed corresponds to a two-level name,
libname · memname. The items are displayed
in one of four selectable modes: Large Icons,
Small Icons, List, Details. When in details
mode, the items can be sorted by Name, Type,
Size, Description or Modified date. Sort by
clicking on a column header; click again to
reverse the sort order.

If the Tree view is visible the expansion of a library node will show only the catalogs.

Contents of catalog
Drill into a catalog by double clicking on its List view
icon, or by selecting its Tree view node. The details
pane displays the entries of a catalog. A catalog
can contain hundreds of items. There are also at
least 60 different types of catalog entries. Some
common types are source, log, output, frame, scl,
class, slist. Each item has a four-level name,
libname · memname · objname · objtype. The

2

items are displayed in one of four selectable modes: Large Icons, Small Icons, List, Details.
When in details mode, the items can be sorted by Name, Type, Description, Size or Modified
date. Sort by clicking on a column header; click again to reverse the sort order.

A catalog node in the Tree view does not expand.

Context menus
When an item in the List view is right clicked, a context menu appears. This means the

menu choices presented for an item are based on its type. In the screen shot, the Gng item is
of type scl, and it has a menu choice that lets you run the SAS/AF program.

You have now reached base camp for climbing the Everest of extending SAS Explorer.

SAS Explorer Options
The default configuration of SAS Explorer addresses a wide range of features, meeting

almost every demand of the typical SAS user, but you are not typical. The design of Explorer
allows for the customization of the context menu choices of every member and entry type. The
mouseful way to create customized choices is to use the Explorer window menu Tools /
Options / Explorer... to raise the Explorer Options... dialog window. The dialog is also opened
by the command EXPOPTS.

Options for library members
The dialog has tabs for dealing with different hierarchical groups.

3

Options for library members

SAS Online Help discusses this dialog. Go to the table of contents; drill down as follows:
SAS Products

Base SAS
Using Base SAS Software

Using the SAS Windowing Environment
Using the Explorer Window

Using the Explorer Options Window
Follow the link to "Changing the Pop-Up Actions and Icon for a Registered Type"

SAS Explorer and the settings of the Explorer Options dialog interact in a manner very
similar to Windows Explorer and its Tools/Folder Options dialog, File Types tab. You select a
type and then edit it.

A list of actions for the type is displayed; you can add new ones, and edit or delete
current ones. Each action has an Action and an Action Command. The action command is
composed of one or more SAS commands, and it may utilize the macro system if desired.

4

Item name parts
When the context menu of a SAS Explorer item is opened, the parts of the item name

are available to the action command. The manner in which they are available is a bit unusual.
Each % symbol specified in an action command is replaced with the item's corresponding name
part in sequence. You must also specify how many bytes of the namepart you wish to use.

Items of a Library Items of a Catalog
Namepart SAS spec Namepart SAS spec

1st % libname %8b libname %8b
2nd % memname %32b memname %32b
3rd % libname %8b objname %32b
4th % memname %32b objtype %8b
5th % n/a libname %8b
6th % n/a memname %32b
7th % n/a objname %32b
8th % n/a objtype %8b

The number between a % and b specifies how many bytes of the name part are used in
the replacement. Do not be concerned about somehow crashing SAS with this. When you
specify more bytes than a namepart has, SAS will not grab unknown characters from memory
storage 'beyond' namepart. However, if you accidentally specify a number of bytes fewer than
a namepart has, you will truncate a namepart, which can cause problems for you. Suppose you
mistakenly used %1b for the libname namepart. The action command would only get the first
letter of the library name!

The number between a % and b may seem extraneous, but it is not. Although not
required per se, it is a good idea to have the number so as to remind you which namepart is
supposed to be getting placed where. The lack of a number can result in part of your command
being 'eaten' by some internal processor. Case in point, POSTMESSAGE "(%b,%b,%b,%b)", in
SAS version 8. Go numberless at your own risk.

Simple commands
The first step up from base camp is using simple task orientated commands that accept

a SAS named thing as an argument.

Consider this action command for a library member of type data or view:

Action: FSVIEW
Action Command: FSVIEW %8b.%32b

For item sashelp.class the action command gets resolved to FSVIEW sashelp.class

Using macro
The macro system can be used in an action command. Recall that a single % is used as

a token for replacement with a namepart. But % is also important to macro! Use two
consecutive % in an action command to indicate macro processing.

5

Consider this action command for a catalog entry:

Action: MPut
Action Command: %%put %8b.%32b.%32b.%8b

For item sashelp.devices.pscolor.dev the action command gets resolved to
%put sashelp.devices.pscolor.dev

Using DATA or Proc steps
The GSUBMIT command is used to submit SAS code snippets.

Consider this action command for a catalog entry:

Action: DPut
Action Command: gsubmit 'data _null_;put "%8b.%32b.%32b.%8b";run;'

For item sashelp.devices.pscolor.dev the code submitted by the resolved command is:
data _null_;
put "sashelp.devices.pscolor.dev";
run;

Using SAS/AF Frames or SCL
The AFA command launches SAS/AF programs. Parameters are passed to the program using
name=value pairs on the command line.

Consider this action command for a catalog entry:

Action: AFPut
Action Command: afa c=sasuser.myhandlers.foo.scl entry=%8b.%32b.%32b.%8b

For item sashelp.devices.pscolor.dev the action command gets resolved to
afa c=sasuser.myhandlers.foo.scl entry=sashelp.devices.pscolor.dev

The AFA command executor parses name=value pairs found on the command line and
stores them as named character items in the _CMDLIST_ sublist of the local environment list.
This sample SCL demonstrates how to obtain an arguments value.
declare char VALUE NAME='entry' ;
VALUE
 = getNitemC
 (getNitemL
 (envlist('L'), '_CMDLIST_')
 , NAME, 1, 1, ''
);
put NAME= VALUE=;

WARNING: The _CMDLIST_ reserves items of name LIBNAME, CATALOG, NAME and TYPE
for documenting the active program. Do not use these names as parameter names in an AFA
command.

6

An examination of the SAS registry shows the AFA command is one favored by SAS Institute.
These SASHELP.EXPLORER SCL entries are invoked by a context menu selection:

• Copy_to_clipboard* - Explorer Action to a Copy a Table to the Clipboard as HTML.

• Excel_table_open* - Explorer Action to open a SAS Table in Excel.

• Save_as_html* - Explorer Action to save a SAS Table as HTML.

• Open_html_entry - Open an HTML entry with WBROWSE.

• Open_sas_file - Open a SAS7BDAT or SAS7BCAT file.

The catalog also contains

• Open_file* - Example Explorer Action for processing a file.

• Open_catalog_entry* - Example Explorer Action for Processing a Catalog Entry.

* Starred entries include source and demonstrate a range of SCL features that can be used in
implementing an action.

Using autocall macros
You can use autocall macros to offload the code writing part of the action commands to

a text file. This approach is recommended for situations when SAS/AF development is
infeasible; perhaps because SAS/AF is not licensed, or the available programming skills are in
Base SAS and SAS Macro only.

Consider this scheme; create a text file xactmac.sas. This file resides in a library
specified in the SASAUTOS System Option. The file is constructed as such:
%macro xactmac (type,action,lib,mem,obj,typ);
 /* %xactmac will cause this file to be automatically included once,
 * and by side effect all the action_* macros will get compiled
 */
 /* dispatch typed action handler */
 %action_&type._&action (&lib,&mem,&obj,&typ);
%mend;
%macro action_data_fsview (lib,mem,obj,typ);
 fsview &lib..&mem;
%mend;

xactmac.sas might contains several if not dozens of macro declarations. For consistency,
each macro would be named according to the construct action_{type}_{action}
Consider this action command for a data library member:

Action: FSView
Action Command: %%xactmac(data,fsview,%8b,%32b,.,.)

For item sashelp.class the action command resolves to %xactmac
(data,fsview,.,.) which in turn dispatches %action_data_fsview
(sashelp,class,.,.) which in final issues the command fsview sashelp.class.

This dispatch methodology allows you to centralize the implementation details of action
commands outside of the registry.

7

Programmatic customization
The discussion up to this point only covers adding an action using the point and click

Explorer Options dialog. Using the dialog is fine for a few actions, but what happens if you have
dozens of actions to configure? What if you want to reuse your custom actions in new projects
or share them with coworkers or a programming community?

The SAS Explorer Options dialog is a front end for adding or updating keys in the SAS
Registry. The keys that get altered by the dialog are under these branches:
CORE\EXPLORER\MENUS\MEMBERS
CORE\EXPLORER\MENUS\ENTRIES
CORE\EXPLORER\MENUS\FILES
CORE\EXPLORER\MENUS\METAEXPLORE\TypeFilters

There are three ways to alter the SAS Registry.

• Explorer Options dialog
• Proc REGISTRY
• SAS/AF class sashelp.fsp.registry.class

Proc REGISTRY
A moderate amount of information about Proc REGISTRY is available in the Online

Help. Read it. You will come to understand that values are loaded into the registry by creating a
file that is constructed as follows:
[key]
"value-name"="value-content"

The keys of interest for customizing actions are
[CORE\EXPLORER\MENUS\MEMBERS\MEMBERTYPE]
[CORE\EXPLORER\MENUS\ENTRIES\ENTRYTYPE]
[CORE\EXPLORER\MENUS\FILES\FILETYPE]

plus
[CORE\EXPLORER\MENUS\MEMBERS\ROOT]
[CORE\EXPLORER\MENUS\MEMBERS\LIBRARIES]

value-name
The construct of the value-name is important (and partly undocumented.)

• An ampersand, &, can precede your desired single letter mnemonic (aka shortcut key.)
• The form {A};{B} has several interpretations. {A} is a positional value, {B} is the menu

text.
If {A} starts with a minus sign, the item will be grayed.
If {B} starts with a minus sign, the item will not appear in the menu (and may cause other
items to disappear from the context menu for the entry or member type)

• The form {A};{B};{C} has an additional interpretation.
{C} can specify a classifier. The classifier determines which icon is displayed next to the
menu choice.
The list of classifiers are found at key [CORE\CLASSIFIERS]
The icon appears only if {B} has a mnemonic

8

value-name examples
The actions in this sample all do the same thing, examine the data of a table using

ViewTable. The difference is in the actions is the name-value, the part to the left of the equals
sign.
c:\temp\foo-actions.txt
[CORE\EXPLORER\MENUS\MEMBERS\TABLE]
"Foo 1"="VT %8b.%32b"
"&Foo 2"="VT %8b.%32b"
"10;&Foo 3"="VT %8b.%32b"
"09;&Foo 4;100"="VT %8b.%32b"

SAS Session
Proc REGISTRY IMPORT="c:\temp\foo-actions.txt";
run;

Foo 4 appears farther down the context menu than Foo 3
because 09 < 10. The icon next to Foo 4 corresponds to classifier #100.

Factory actions missing
Look carefully and note that the 'default factory' menu choices for the TABLE member

type are not seen! Why? Customizations made via the Options dialog or imported via Proc
REGISTRY are stored in the SASUSER registry. A SASUSER registry branch automatically
overrides a SASHELP registry branch. The SASHELP [...\TABLE] branch contains the default
factory settings. To ensure the factory settings are present you need to copy them from
SASHELP to your SASUSER.
Proc REGISTRY
 STARTAT='CORE\EXPLORER\MENUS\MEMBERS\TABLE'
 USESASHELP EXPORT='c:\temp\factory-table-actions.sasreg';
Proc REGISTRY IMPORT='c:\temp\factory-table-actions.sasreg';
run;

Restore factory actions
The default actions of a type can be restored by deleting all the SASUSER

customizations made for it. A simple program can export the current settings and then uninstall
them.
Proc REGISTRY STARTAT='CORE\EXPLORER\MENUS\MEMBERS\TABLE'
 EXPORT='c:\temp\sasuser-table-actions.sasreg';
Proc REGISTRY UNINSTALL='c:\temp\sasuser-table-actions.sasreg';
run;

New
Advanced customizers might also use key
[CORE\EXPLORER\NEW\ENTRY\ENTRYTYPE]
[CORE\EXPLORER\NEW\MEMBER\ENTRYTYPE]

to alter the list of entry types shown in the New Entry dialog raised by selecting New from the
context menu displayed when SAS Explorer is displaying the members of a library or contents
of a catalog.

9

More on Macros
There are various strategies that can be employed when developing macros for use as

SAS Explorer action commands.

Macros - Part II.A
Suppose you named your action_* macros to exactly match the key path under which

the command action is supposed to be installed. Further suppose the macros description
corresponds to the menu choice you want displayed.
%macro action_members_table_A1 (lib,mem,pos3,pos4) / des='FS Browse';
 /* browse a table using the likenamed screen stored in sasuser.profile */
 fsbrowse &lib..&mem sasuser.profile&lib..&mem..screen;
%mend;

Such a construct has all the information needed for a self realizing scheme. A program
can read the macro catalog and write a file that Proc REGISTRY can import.
/ *
 * Register SAS Explorer actions based on macro name and description
 */
proc sql;
 create view actions as
 select objname, objdesc
 from dictionary.catalogs
 where libname = 'WORK'
 and memname = 'SASMACR'
 and objname like 'ACTION_%'
 and objtype = 'MACRO'
 ;
quit;
filename xact catalog 'work.explorer.actions.source';
data _null_;
 set actions;
 branch = scan (objname,2,'_');
 type = scan (objname,3,'_');
 namevalue = quote(trim(objdesc));
 file xact;
 put '[CORE\EXPLORER\MENUS\' branch +(-1) '\' type +(-1) ']';
 put namevalue +(-1) '="%%' objname '(%8b,%32b,%32b,%8b)"';
run;
proc registry
import=xact; run;

Macros - Part II.B
A slightly different construct would use shorter macro names and place all action context

info in the description. The macro description is the branch, type and name-value delimited by
the pipe character (|):

10

%macro xact_1 (lib, mem) / des='M|TABLE|10;FS View';
 /* view a table using the default formula stored in sasuser.profile */
 fsview &lib..&mem; formula
%mend;

The core of this technique relies on extracting information from the macro description.
branch scan(objdesc,1,'|')
type scan(objdesc,2,'|')
name-value scan(objdesc,3,'|')

/*
 * Register SAS Explorer actions based on macro name and description
 */
proc sql;
 create view actions as
 select objname, objdesc
 from dictionary.catalogs
 where libname = 'WORK'
 and memname = 'SASMACR'
 and index (objname,'XACT_') = 1
 and objtype = 'MACRO'
 ;
quit;
filename xact catalog 'work.explorer.actions.source';
data _null_;
 set actions;

 branch = scan (objdesc,1,'|');
 type = scan (objdesc,2,'|');
 choice = scan (objdesc,3,'|');
 if branch = 'M' then branch = 'MEMBERS'; else
 if branch = 'E' then branch = 'ENTRIES';
 select;
 when (branch =: 'M') command='%%'||trim(objname)||'(%8b,%32b)';
 when (branch =: 'E') command='%%'||trim(objname)||'(%8b,%32b,%32b,%8b)';
 otherwise delete;
 end;
 choice = quote(trim(choice));
 command = quote(trim(command));
 file xact;
 put '[CORE\EXPLORER\MENUS\' branch +(-1) '\' type +(-1) ']';
 put choice +(-1) '=' command;
run;
proc registry import=xact;
run;

Macros - Part II.C
A third variant would store a minimum of meta information in name or description. The

11

minimum is the form of the macros invocation. The remainder of the meta information of the
macros use context would be divulged upon request.
%macro xact_1 (lib, mem, divulge=) / des='%8b,%32b';
 %let divulge = %upcase(&divulge);
 %if &divulge = BRANCHES %then %do;
 MEMBERS\TABLE
 MEMBERS\VIEW
 %end;
 %else
 %if &divulge = NAME %then %do;
 %str(10;FS View)
 %end;
 %else %do;
 fsview &lib..&mem; formula
 %end;
%mend;

The benefit of this approach is that a single macro can indicate its utilization in more than
context menu. The program to utilize divulgent macros whose names start with XACT is left as
an exercise for the reader. The program would have to loop through the BRANCHES divulged
and create a registry key entry for each. (The two earlier approaches allow a macro to specify
its applicability to only one branch.)

Bonus section

Comments
Lines that start with the # symbol can be used to comment and document your registry import
files.
Purpose: List the value mappings that comprise a numeric format
Note: The format must reside in a catalog listed
in the FMTSEARCH system option
Contributor: Richard A. DeVenezia
Date: 23Jan2005
[CORE\EXPLORER\MENUS\ENTRIES\FORMAT]
...

Name part specifiers
Experimentation shows the %nb tokens used for replacement are in fact format

specifiers as used in the C function sprintf. The b Type is not standard; it is speculated to be a
custom type implemented by SAS which stops output at width, or the first zero byte or blank. If
you are curious, try using a specifier such as %x or %d.

SAS Explorer maintains 2 (or 4) pointers that reference the memory locations where the
nameparts are stored. When it is time to resolve the action command, this happens internally:
...obtain pointers to nameparts
...obtain action command from regigstry
sprintf (lpstrCommand
 , lpstrActionCommand
 , lpstrLibname
 , lpstrMemname
 , lpstrObjname
 , lpstrObjtype);
...present lpstrCommand to command executor...

12

Conclusion
SAS Explorer is an essential component for efficient interactive work within a SAS

session. It is founded on design principles utilized in a wide variety of other software systems,
making the interface easily accessible to both new and veteran SAS users. Repetitive tasks
can be simplified by creating custom actions.

About the Author
Richard A. DeVenezia is an independent consultant who has worked extensively with

SAS products for over fifteen years. He has presented at previous SUGI, NESUG and SESUG
conferences. Richard is interested in learning and applying new technologies. He is a SAS-L
Hall of Famer and remains an active contributor to SAS-L.

Downloadable actions
A variety of actions can be downloaded and installed from the author's website. Visit

http://www.devenezia.com/downloads/sas/actions/main.php

Acknowledgments
The author is indebted to Dr. Ann DeVenezia for her superb editing.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

13

